

Dr. MAHALINGAM COLLEGE OF ENGINEERING AND TECHNOLOGY

Affiliated to Anna University, Chennai; Approved by AICTE; Accredited by NAAC with Grade 'A++' Accredited by NBA - Tier1 (Mech, Auto, Civil, EEE, ECE, EIE and CSE)
Udumalai Road, Pollachi - 642 003 Tel: 04259-236030/40/50 Fax: 04259-236070 www.mcet.in

Question Bank

Process Control

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

Dr.Mahalingam College of Engineering and Technology, Pollachi-3 Department of Electronics and Instrumentation Engineering

Question Bank

Subject Name: 16EIT62 - Process Control Semester: VI Semester

Two Mark Questions:

Unit – I:

- 1. List the objectives of Process control
- 2. Define Manipulated variable and Controlled Variable
- 3. Why do we need mathematical modelling of process?
- 4. Distinguish between continuous and batch process
- 5. Compare servo and regulatory operation
- 6. Give the dynamics of first order level and flow process
- 7. What is self-regulation?
- 8. Compare interacting and non-interacting systems
- 9. Derive the transfer function of first order level process
- 10. Mention the name of various modelling approaches used in process control

Unit – II:

- 1. Define controller tuning.
- 2. List the types of tuning methods
- 3. What is Process Reaction Curve?
- 4. Define one-quarter decay ration
- 5. Compare ISE, IAE and ITAE
- 6. Give PID controller settings of damped oscillation method
- 7. Compare simple performance and integral performance criteria
- 8. Give the steps involved in open loop tuning method
- 9. Give the formulae for the PID controller using Z-N method
- 10. Define ITAE.

Unit - III:

- 1. Compare Proportional, Integral and derivative control actions
- 2. Define on/off controller
- 3. Define error and offset
- 4. Define Proportional Band and Reset time
- 5. Define integral windup.
- 6. Why derivative controller alone is not recommended for noisy process?
- 7. Draw the electronic PI controller
- 8. Why electronic controller is preferred than pneumatic controller for a process?
- 9. Draw the Pneumatic PID controller

Unit - IV:

- 1. What is the purpose of the actuators
- 2. Mention the types of control valves used in industries
- 3. Compare linear valve and equal percentage valve
- 4. Why equal percentage valve is mostly preferred than other type of valves?
- 5. Define control valve sizing
- 6. Define control valve sensitivity
- 7. Define Rangeability
- 8. Define cavitation and Flashing
- 9. Mention the type of materials used valve body and Plug

10. Mention the applications of control valves

Unit – V:

- 1. Compare feedback and feedforward control scheme
- 2. What is auctioneering control scheme?
- 3. Mention the purpose of HSS and LSS switches in selective control scheme
- 4. Define ratio control scheme
- 5. Why adaptive controller is preferred than ordinary control scheme?
- 6. Define inferential control scheme.
- 7. Mention the advantages of cascade scheme
- 8. Draw the cascade control scheme with CSTR process
- 9. Draw the feedforward control scheme with Evaporation process
- 10. Mention the name of the control schemes used in distillation process control PART B

Unit – I:

- 1. Explain briefly about the interacting and non-interacting system.
- 2. Explain briefly about the batch and continuous process with an example
- 3. Describe the dynamics involved in second order process
- 4. Problems in interacting and non-interacting system(Refer class notes)
- 5. Derive the transfer function of first order level, pressure and flow process

Unit – III:

- 1. Explain briefly about the continuous and discontinuous controller modes
- 2. Explain the design steps involved in design of electronic PID controller
- 3. Explain briefly about the operation of pneumatic PID controller and mention its applications
- 4. Problems in PID controller design(Refer class notes)
- 5. Problems in PID controller design(Refer class notes)

Unit - II:

- 1. Describe briefly about the simple performance and integral performance criterion
- 2. Explain in detail about the open loop tuning method and give its PID controller settings
- 3. Explain in detail about the Z-N tuning method procedure and give its PID controller settings
- 4. Problems in Tuning (Refer class notes)
- 5. Problems

Unit – V:

- 1. Explain in detail about the cascade control scheme with an example
- 2. Explain in detail about the selective control scheme with an example
- 3. Explain in detail about the adaptive control scheme with an example
- 4. Explain in detail about i. Inferential control scheme
 - ii. Ratio control scheme
- 5. Describe various control scheme used in CSTR process
- 6. Describe various control scheme used in Distillation process

Unit – IV:

- 1. Explain in detail about the characteristics of control valves
- 2. Explain the operation of I/P converter and Actuators
- 3. Explain in detail about the cavitation and Flashing. Mention its elimination methods
- 4. Describe briefly about the parameters involved in control valve selection

- 5. Explain the following
 - i.
- Control valve sizing ii. Materials used in Valve body and Trim y