Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code : Title	15 UPS 101 Core I: Properties of Matter	Semester: I
Hrs/Week:	3	Credit:3
Objectives	 To understand the basic concepts of gravitation. To get exposure to the properties of liquids & solids 	

Unit	Content	Hrs
I	GRAVITATION Kepler's laws - Newton's law of gravitation - Gravitational constant: Boy's Method - Gravitational field and Gravitational potential - Potential energy - Escape velocity - Equipotential surface - Earthquakes - Seismic waves - Determination of the Epicenter and the focus - Applications of Seismology	8
II	ELASTICITY Stress and Strain - Hooke's law - Types of Elasticity - Relation connecting the Elastic constants - Poisson's ratio - Torsional pendulum - Determination of Moment of Inertia: The Inertia Table - Bending of beams - Bending moment - Depression of a beam Supported at the ends	8
III	VISCOSITY Viscosity - Coefficient of viscosity - Poiseuille's equation for the flow of liquid through a horizontal capillary tube – Experimental determination of coefficient of viscosity for a liquid - Motion in a viscous medium: Stoke's law - Determination of coefficient of viscosity of highly viscous liquid - Stoke's method - Rotation viscometer	8
IV	SURFACE TENSION Surface tension - Surface energy - Excess pressure inside a liquid drop and soap bubble - Determination of surface tension of a bubble - Capillary rise - Energy required to raise a liquid in a capillary tube - Experimental study of variation of surface tension with temperature	8
V	DIFFUSION AND OSMOSIS Diffusion - Fick's law - Graham's law of diffusion of gases - Osmosis and osmotic pressure - Laws of osmotic pressure - Experimental determination of osmotic pressure	7

• Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Units I - V).

- Brijlal & Subramaniam, (2000). *Properties Of Matter*. Vikas Publications house, New Delhi.
- Murugesan R. (1995). *Properties Of Matter*. S.Chand & Company Ltd, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code	Subject Code: 15 UPS 102	
Title	: Core II: Mechanics & Sound	Semester: I
Hrs/Week:	3	Credit:3
Objectives	 Understand principles of rigid body dynamics and Projectile motions, Understand statics, hydrostatics and hydrodynamics 	

Unit	Content	Hrs
I	Rigid body dynamics Rigid body-rotational and vibrational motion -Torque- moment of inertia - radius of gyration -kinetic energy of rotation- M.I. of a fly wheel- experimental determination- precession-M.I. of a diatomic molecule-its rotational energy states.	8
II	Projectiles Projectiles – Range – Expression for the range of projectile on the inclined plane – path of a projectile – Impulse – Direct and oblique impact – Expression for velocity after direct impact – Loss of energy during direct and oblique impact.	7
III	Force of friction –Limiting friction – Laws of friction –Angle of friction and resultant reaction Hydrostatics Definition and determination of centre of pressure – Expression for centre of pressure of a rectangular lamina with one side on the surface of the liquid – Laws of floatation–Definition for metacentre and metacentric height. Hydrodynamics Steady or streamline flow – Lines and tubes flow – Equation of continuity of flow–Bernoulli's theorem.	8
IV	Sound Classification of Sound - Musical sound and Noise - Speech - Human voice - Human Ear - Characteristic of Musical Sound - Intensity of Sound - Measurement of Intensity of Sound - Decibel - Phon(Definitions only) - Velocity of Transverse waves along a stretched string - Laws of transverse vibration of strings - Melde's experiment - Resonance.	8
V	Acoustics and Ultrasonics Introduction — Reverberation — Sabine's Reverberation formula — Determination of Absorption coefficient — Factors affecting Acoustics of buildings — Sound distribution in an Auditorium — Requisites for good acoustics — Ultrasonics — Production of Ultrasonics — Magnetostriction Oscillator — Piezoelectric oscillator — Detection of Ultrasonic waves — Acoustic grating — Applications.	8

- Mathur D.S. (1996). *Mechanics*. S.Chand & Company Ltd, New Delhi, (Units I & III).
- Venkataraman M.K. (2014). *Dynamics*. Agasthiar Publications, Trichy, (Unit II).
- Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Unit III).
- Brijlal. N. Subramaniam. (2002). *Text Book of Sound*. Vikas Publications house Pvt Ltd, NewDelhi, (Unit IV & V).

- Chakraborthy. B. K. (2001.) Mechanics and General properties of matter, (2001). Books & Allied (P) Ltd, .
- Rajendran. V, Marikani. A.(1997) *Applied Physics for Engineers*. Tata Mc-Graw Hill, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code: Title:	15 UPS 203 Core III: Heat & Thermodynamics	Semester: II
Hrs/Week:	5	Credit: 5
Objectives	 To understand the basic nature of heat. To apply the laws of thermodynamics to simple thermodynamical problems 	

Unit	Content	Hrs
	THERMOMETRY AND SPECIFIC HEATS	
I	Concept of heat and temperature - Thermoelectric thermometer - Absolute zero and Ice point - Low temperature measurement - High temperature measurement - Specific heat of a gas – C_p & C_v - Determination of C_v by Joule's differential steam calorimeter - Determination of C_p by continuous flow electrical method - Dulong and Petit's law - Variation of Specific heat and Atomic heat with temperature - Einstein's theory of specific heat - Debye's theory of specific heat	13
II	KINETIC THEORY OF GASES Kinetic theory of gases - Postulates - Derivation of gas equation - Maxwell's law of distribution of velocities - Experimental verification - Mean free path - Application of mean free path in determination of viscosity and thermal conductivity - Degrees of freedom and Maxwell's law of equipartition of energy - Vander waal's equation of state - Critical constants - Corresponding states of matter	13
III	TRANSMISSION OF HEAT Thermal conductivity - Forbe's method - Radial and cylindrical flow of heat - Thermal conductivity of rubber - Stefan's law and experimental verification - Determination of Stefan's constant - Blackbody - Properties of thermal radiation - Distribution of energy in the spectrum of a black body - Planck's law of black body radiation and significance	13
IV	LOW TEMPERATURE PHYSICS Porous Plug experiment and theory - Cascade process - Liquefaction of Oxygen - Air (Linde's process) - Hydrogen (Cascade process) - Liquefaction of Helium - K.Onnes method - Helium I and Helium II - Production of low temperature - Adiabatic demagnetization - Conversion of magnetic temperature to Kelvin temperature - Helium vapour pressure thermometer - Electrolux refrigerator	13
V	THERMODYNAMICS Zeroth law of thermodynamics - Thermal equilibrium - Comparison of heat and work - First law of thermodynamics - Isothermal and Adiabatic process - Work done during Isothermal and Adiabatic process - Reversible and Irreversible process - Carnot's reversible engine - Carnot's	13

theorem - Second law of thermodynamics - Entropy :
Reversible and Irreversible process - Third law of
thermodynamics - Temperature - Entropy diagram -
Maxwell's thermodynamic relations

• Brijlal and Subrahmanyam. (2000). *Thermodynamics and Statistical Mechanics*. Sultan & Chand & Co Ltd, NewDelhi, (Units I – V).

- Kakani S.L. (2001). *Thermodynamics And Statistical Mechanics*. Raj Publications, Jaipur.
- Singhal S.S. (2013) *Heat, Thermodynamics & Statistical Physics*. Pragathi Pragason, Meerut, 1st edition.

Department	Physics	
Course	year:	tive from the 2015
Subject Code:	LSeme	ester: I & II
Title :	Core IV: Physics Lab I	
Hrs/Week:	3 Credi	it: 3
Objectives	To stimulate the student's desire to apply their	
	knowledge of theory to experiments.	
	To test how far the students have grasped and	
	imbibed the basic principles taught.	1
Cycle	Content	Hrs
	1. Acceleration due to Gravity and Moment of Inerti-	a -
	Compound pendulum	
	2. Young's Modulus - Non uniform Bending - Pin	and
	Microscope	
I	3. Rigidity Modulus - Static Torsion	24
	4. Surface Tension and Interfacial Tension - Drop weight met	nod
	5. Coefficient of Viscosity - Stoke's method	
	6. Verification of Laws of Transverse Vibrations and Freque	ency
	of a Fork - Sonometer	
	1. Young's Modulus - Non uniform Bending - Koenig's meth	od
	2. Young's Modulus - Cantilever - Pin and Microscope	
	3. Viscosity of a Liquid - Capillary Flow - Variable Press	sure
II	head	24
	4. Thermal Conductivity of a Bad Conductor - Lee's Disc	,.
	5. Specific Heat Capacity of a Liquid - Newton's Law of cool	
	6. Frequency of a Tuning Fork and Density of Solid and Liqui	id -
	Melde's String	
	1. Young's Modulus - Uniform Bending - Scale and Telescope	
	2. Rigidity Modulus and Moment of Inertia - Torsic	onai
III	Pendulum 2. Coefficient of Viscosity. Seedle's Viscometer.	
	3. Coefficient of Viscosity - Searle's Viscometer	24
	4. Specific Heat Capacity of a Liquid - Joule's Calorimeter	10
	5. Comparison of Viscosities of Liquids and Radii of Capil	iary
	tubes 6 Defrective Index of a Priem Spectrometer	
	6. Refractive Index of a Prism - Spectrometer	

- Arora C.L. (2007). *Practical Physics*. S.Chand & Co, 19th Edition.
- Srinivasan M. L. Balasubramanian S. Ranganathan R. (2007). *A Text book of Practical Physics*. Sultan Chand. New Delhi.

- Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.
- Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers.
- Gupta S.L. Kumar V. (1999). *Practical Physics*. Pragati Prakashan, Meerut, 20th Edition.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code : Title :	15 UPS 305 Core V: Electricity & Magnetism	Semester: III
Hrs/Week:	5	Credit: 5
Objectives	➤ To understand the concepts of Electric field.	
	To understand the phenomenon of	
	Electromagnetic induction.	
	➤ To study the oscillations in LCR circuits.	
	➤ To realize the significance of Maxwell's	
	equations	

Unit	Content	Hrs
I	ELECTRIC FIELD AND POTENTIAL Concept of charge - Electric Field (E) - Potential difference (V) - Relation between E and V - Equipotential surfaces - Poisson's and Laplace equations - Potential and field due to an electric dipole - Potential and field due to a quadrupole - Potential and field due to uniformly charged disc - Potential due to two concentric spherical shells of charge - Potential energy due to charge distribution - Electrical images - A point charge near a conducting plane and conducting sphere.	13
II	CAPACITORS AND DIELECTRICS Capacitors - Parallel plate capacitor - Cylindrical capacitor - Spherical capacitor - Guard ring capacitor - Energy stored in a capacitor - Force of attraction between capacitor plates - Dielectric constant - Polar and nonpolar molecules - Polarisation of dielectric - Capacity of a parallel plate capacitor partially and completely filled with dielectric - Electric polarization vector P - Electric displacement vector D - Relation between D, E and P - Dielectric susceptibility and permitivity - Physical meaning of polarization - Mechanism of polarisation - Types of condensers - Dielectric strength	13
III	MAGNETOSTATICS AND MAGNETIC FIELD Magnetic effect of current - Lorentz force - Force on a current carrying wire - Magnetic flux - Gauss law in magnetostatics - Torque on a current carrying coil in uniform magnetic field - Potential energy of a current loop - Ballistic galvanometer - Deadbeat condition - Comparison of emfs and capacitances - Biot Savart law- field due to steady current in a long straight wire - Interaction between two long parallel wire carrying currents - Magnetic field along the axis of a circular coil - Helmholtz galvanometer - Field along the axis of a solenoid - Magnetic dipole - Ampere's law - Application to a current carrying conductor and solenoid	13
IV	ELECTROMAGNETIC INDUCTION Faraday's laws of Electromagnetic induction - Deduction of Faraday's laws from Lorentz's force - Self inductance - Calculation of self inductance for a solenoid - Energy stored in magnetic field - Mutual inductance - Energy stored in two interacting circuits - DC circuits : Simple RL circuit - Growth	13

	and decay of current - RC circuit - Charging and discharging of a condenser - Ideal LC circuit - Series LCR circuit - Discharge of a condenser through inductance and resistance	
V	MAXWELL'S EQUATIONS AND ELECTROMAGNETIC THEORY Basic equations - Types of current - Vacuum displacement current - Maxwell's equations (No derivations) - Maxwell's equations in free space - Electromagnetic waves in free space - Electromagnetic waves in isotropic non - conducting media - Refractive index - Impedence of dielectric media - Energy density of electromagnetic wave - Poynting theorem - Energy per unit volume - Retarded potentials	13

• Tewari K.K. (2002). *Electricity And Magnetism*. Sultan chand and co Ltd, New Delhi, (Units I - V).

- Tayal T.C. (2001). *Electricity And Magnetism*. Himalaya publication house, Mumbai.
- Murugesan R. (1998). *Electricity And Magnetism*. S.Chand & Company Ltd, New Delhi.

Department	Physics			
Course	BSc Physics	Effective fro	om the	
		year: 2015		
Subject Code	: 15 UPS 3N1	Semester: Il	I	
Title	: Non-Major Elective I: Principles of Physics – I			
Hrs/Week	1	Credit: 2		
Objectives	To spread the spirit of scientific interest			
	To develop the curiosity in Science			
	To embark on pursuing scientific enquiries			
	as a hobby			
Unit	Content		Hrs	
	ATMOSPHERE			
	Cosmic Rays - Ozone Layer - CFCs role in deplet			
I	Wind and Earth – Lightning (conducting medium	· ·	3	
1	Fragmentary Rainbows - Measurement of Rain - Rai		3	
	clouds-Reason for continous stream-Cloud burs	ts-Artificial		
	Rain - Rainbows (Size, doubleness)			
	GEOLOGY			
II	Age of Fossil - Measurement of depth of ocean - Lava from		2	
	Volcano - Monsoons - Seebergs - Radiation from Granites and		-	
	Marbles - Earth's Magnetic properties			
	HYDROLOGY			
III	Coolness of mud pot water - Colour of Waterfall - Measurement		2	
	of Quality of water in dams - Purity of Rain water - Purity of			
	mineral water in the Market			
	SPACE			
IV	Saturn rings - Measurement of temperature of planets			
	Asteroids - Rotation of Earth - Shooting stars and			
	Atmosphere of stellar bodies - Flat plane orbits of Pla	nets		
	HOME APPLIANCES			
T 7	Microwave ovens - Pressure cooker - Richter scale		2	
V	sound in Tension wires - Curved Fan wings - Sodi		3	
	lamp in streets - Tube Lights: Role of chokes of Star	ter, Reason		
	for no sharp shadows – Photocopier - Thermostat			

• The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. John Wiley Publications. 6th Edition.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code:	15 UPS 3N2	Semester: III
Title :	Non-Major Elective I: Renewable Energy Sources	
	Paper – I	
Hrs/Week;	1	Credit: 2
Objectives	To gain knowledge about conventional and	
	non-conventional energy sources and their	
	utilization.	

Unit	Content	Hrs
I	INTRODUCTION TO ENERGY SOURCES Conventional energy sources: Coal – Gas – Water – Agriculture and organic waste – Non conventional sources: Solar energy – Renewable energy resources	3
II	SOLAR RADIATION AND ITS MEASUREMENTS Solar Constant - Solar Radiation at the earth's surface: Beam and diffuse solar radiation – Air mass – Attenuation of beam radiation – Solar radiation geometry: Latitude of location – Declination – Hour angle – Angstrom compensation Pyrheliometer	3
III	SOLAR ENERGY COLLECTORS Physical principles of the conversion of solar radiation into heat - Flat plate liquid collector - Solar concentrators and receiver geometries (Basic types) - Advantages and disadvantages of concentrating collectors over flat – plate type collectors	3
IV	SOLAR ENERGY STORAGE Types of energy storage – Thermal storage - High temperature latent heat storage - Electrical storage - Storage in the form of fuel – Storage in the form of potential hydrogen energy	2
V	APPLICATIONS OF SOLAR ENERGY Introduction - Solar water heating- Space heating: Passive heating systems - Thermal storage wall - Roof storage - Solar cell principle - Solar cell modules - Applications of solar photovoltaic system	2

• Rai G. D. (2002). *Non Conventional Sources of Energy*. Khanna Publishers, NewDelhi, (Units I – V).

- Rai G. D. Solar Energy Utilization. Khanna Publishers, NewDelhi.
- Garg H.P. Prakash J. *Solar Energy Fundamentals And Applications*. Tata McGraw Hill Publications, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2015
Subject Code:	15 UPS 4N3	Semester: IV
Title :	Non-Major Elective II: Principles of Physics –II	
Hrs/Week:	1	Credit: 2
Objectives	 To spread the spirit of scientific interest To develop the curiosity in Science To embark on pursuing scientific enquiries as a hobby 	

Unit	Content	Hrs
I	Electric train – Leek proof battery –Hot air balloons – Remote control in TV –Superconductivity – Nuclear reactors	3
II	Photochromic glasses – Exhaust silencer – Optical fibers – Radar and Sonar – Fluorescent Lamps – Holograms – Touch screens	2
III	Earthquake measurement – Splitting of white light – GPS – Origin of Gravity – Use of Infrared spectroscopy – Static electricity – Three pin electric plugs – Electric line tester	2
IV	Refrigerants and their use in refrigerators - Frost formation - Air Cooler & Conditioner - Black box in Planes - Speech synthesizers - Lie detector - Pencil eraser - Bullet proof glass - Dry cleaning - Aeroplane not affected by lightning - Mosquito mats - Unleaded Petrol and two wheelers - Oil with Petrol for two wheelers	3
V	TFM on soap - Cell phones - Cordless phones - Tubeless tyres - Radial & Ordinary tyres- Non linear editing - Tear gas - Smell of Dust bin - Biological Weapon -Super Plasticizers in concrete - Super Computers - Computers Simulation -Artificial teeth - Aqualung - Purity of Honey - Breath analyzers	3

• The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. 6th Edition, John Wiley Publications.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code	15 UPS 4N4	Semester: IV
Title	: Non-Major Elective II : Renewable Energy Sources	
	Paper – II	
Hrs/Week	1	Credit: 2
Objectives	To gain knowledge about inexhaustible sources of energies.	

Unit	Content	Hrs
I	WIND ENERGY Introduction- Nature of the wind – The power in the wind-Basic components of wind energy conversion system-Classification of WEC systems- Direct heat applications.	3
II	ENERGY FROM BIOMASS Introduction- Biomass conversion technologies- Wet processes - Dry processes - Photosynthesis - Classification of biogas plants.	3
III	GEOTHERMAL ENERGY Introduction- Estimates of geothermal power – Geothermal sources – Hydrothermal resources – Applications of geothermal energy.	2
IV	ENERGY FROM OCEANS Introduction- Ocean thermal electric conversion by open and closed cycles- Energy from tides- Basic principle of tidal power- Advantages and limitations of small scale hydroelectric.	3
V	HYDROGEN ENERGY Introduction – Properties of hydrogen – Electrolysis or the electrolytic production of hydrogen – Hydrogen storage – Utilization of hydrogen gas.	2

• Rai,G.D. (2002). *Nonconventional Sources of Energy*, Khanna Publishers. New Delhi, (Units I – V).

- Rai G.D. Solar Energy Utilization, Khanna Publishers. New Delhi.
- Sulchatme S.P. *Principles of Thermal Collection and Storage*, Tata McGraw Hill Publication, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code: Title:	15 UPS 406 Core VI: Optics & Spectroscopy	Semester: IV
Hrs/Week:	5	Credit: 5
Objectives	 To understand the mechanism of energy transfer in the form of waves and to impart knowledge in light To familiarize the concepts of molecular, atomic and nuclear spectra. 	

Unit	Content	Hrs
I	WAVE MOTION Characteristics of wave motion - Transverse and longitudinal wave motion - Wavelength, Frequency, Amplitude, Time period, Vibration and Phase (Definitions only) - Relation between frequency and wavelength - Properties of longitudinal progressive waves - Equation of simple harmonic wave - Particle velocity and Wave velocity INTERFERENCE Theory of interference - Fresnel's biprism experiment - Determination of wavelength - Interference due to reflected light - Colours of thin films - Air wedge - Testing the planeness of surfaces - Newton's rings - Determination of wavelength and refractive index of a liquid	13
II	DIFFRACTION Fresnel's explanation of rectilinear propagation of light - Zone plate - Zone plate as converging lens - Fresnel's diffraction at a circular aperture - Fraunhofer diffraction at a single slit - Theory of the plane transmission grating - Determination of wavelength POLARISATION Polarisation of transverse waves - Plane of polarization - Brewster's law and Brewster's window - Polarization by refraction - Double refraction - Principal section and principal plane - Nicol prism - Nicol prism as an analyser - Theory of circularly and elliptically polarised light - Optical activity - Fresnel's explanation of rotation - Specific rotation - Laurent's half shade Polarimeter	13
III	LASER OPTICS Laser Characteristics - Einstein's coefficients -Population inversion - Pumping methods - Essential elements and Action of laser system - Ruby Laser- He-Ne Laser - Applications: Holography and Lasers in medicine FIBER OPTICS Construction and types of optical fiber - Critical angle - Acceptance angle, Acceptance cone and Numerical aperture - Propagation of light through optical fiber - Optical fiber configurations - Fiber optic communication system	13

	MOLECULAR SPECTRA	
	Rotation of molecules - Rotational spectra of rigid diatomic	
	molecule - Techniques and Instrumentation of Microwave	
	Spectroscopy - Energy of a Vibrating diatomic molecule -	
IV	Simple harmonic oscillator - Techniques and Instrumentation	13
	of Infrared Spectroscopy - Applications of Microwave &	
	Infrared Spectroscopy (Basic ideas) - Raman effect and	
	characteristics - Experimental study - Quantum theory of	
	Raman effect	
	ATOMIC & NUCLEAR SPECTRA	
	Normal and Anomalous Zeeman effects - Experimental study	
	of normal Zeeman effect - Lorentz Classical interpretation and	
V	Expression for the Zeeman shift - Quantum mechanical theory	13
•	of Normal Zeeman effect - Paschen Back effect - Stark effect -	13
	NMR: Splitting of nuclear level in a magnetic field – Block	
	diagram of NQR spectrometer - ESR: Interaction with	
	magnetic field - Block diagram of ESR spectrometer	

- Subramanyam N. Brijlal, Waves And Oscillations. S.Chand & Co, New Delhi, (Unit I).
- Subrahmanyam. N. Brijlal, Avathanulu M.N. (2008). *A Textbook Of Optics*. S.Chand and Co Ltd., New Delhi, (Units I III).
- Colin N .Banwell, Elaine M. Mc Cash, (2004). *Fundamentals Of Molecular Spectroscopy*. Tata McGraw-Hill, New Delhi, (Unit IV).
- Gupta S.L. Kumar V. Sharma R.C. (2001). *Elements Of Spectroscopy*. 15th edition, Pragati Prakashan, Meerut, (Unit V).

- Halliday, Resnick, (1994). *Physics Part I & II*. 4th Edition, Wiley Eastern Ltd, New Delhi.
- Jenkins, White, (1981). Fundamentals of Optics. 4th Edition, Mc Graw-Hill., New York.
- Manas Chanda, (1982). *Atomic Structure And Chemical Bond*. 2nd edition, Tata McGraw Hill, New Delhi.
- Gurdeep Chatwal, Sham Anand, (1987). *Spectroscopy*. 3rd edition, Himalaya Publishers, Mumbai.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code:	15 UPS 407	Semester: III &
Title :	Core VII: Physics Lab II	IV
Hrs/Week:	3	Credit: 3
Objectives	➤ To understand the theory with hands-on	
	experience.	

Cycle	Content	Hrs
I	 1.Refractive Index of a Liquid - Spectrometer - Hollow Prism 2.Refractive Index of a Prism - Spectrometer - i-d curve 3.Radius of curvature and Refractive index of a lens - Newton's Rings 4.Calibration of Voltmeter (Low & High Range) - Potentiometer 5.Determination of M - Field along the axis of a Circular coil carrying current 6.Figure of merit - Current & Voltage Sensitivity - Ballistic Galvanometer 	24
II	1.Refractive Index of a Prism - Spectrometer - i-i' curve 2.Wavelength of different colours of Mercury spectrum and Dispersive power of a Grating - Normal Incidence-Spectrometer 3.Thickness of a Wire - Air wedge 4.Temperature Coefficient & Resistance of a coil of wire - Potentiometer 5.Determination of H - Circular Coil carrying current -Vibration Magnetometer 6.Comparison of Resistances - Specific Resistance - Ballistic Galvanometer	24
III	1.Refractive Index - Spectrometer - Small Angle Prism 2.Cauchy's Constants and Dispersive Power of a Prism - Spectrometer 3.Calibration of Ammeter(High Range) and Reduction Factor of T.G - Potentiometer 4.E.M.F of a Thermocouple - Potentiometer 5.Absolute capacity of a Condenser - Ballistic Galvanometer 6.Mutual Inductance of a Coil & Comparison of Mutual Inductances - Ballistic Galvanometer	24

• Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers, Book II.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code:	15 UPS 508	Semester: V
Title :	Core VIII: Classical Dynamics	Semester. v
Hrs/Week:	5	Credit: 5
Objectives	➤ To understand the basic concepts in mechanics	
	of a particle and system of particles.	
	➤ To familiarize the classical equation of motions	
	by Lagrangian, Hamiltonian and Hamilton-	
	Jacobi formulations	

Unit	Content	Hrs
I	MECHANICS OF A PARTICLE Linear momentum - Angular momentum-Work- Power- Kinetic energy Conservative forces- Potential energy- Conservation theorem for linear momentum Conservation theorem for angular momentum - Conservation theorem for energy - Motion of a particle under time dependent applied force -Motion of a free electron in oscillating field - Motion of a particle under damping forces - Motion of a particle under central force - Application to Projectile and simple harmonic vibrations	13
II	MECHANICS OF SYSTEM OF PARTICLES Conservation theorem for a system of particle; Conservation theorem for linear momentum, angular momentum and energy - Constrained motion - Types of constraints with examples - Forces of constraints - Degrees of freedom - Generalized coordinates - Generalized notation for Displacement, Velocity, Acceleration, Momentum, Force and Potential - Limitations of Newton's Law	13
III	LAGRANGIAN FORMULATION Delta-Variation process - Hamilton's principle - Deduction of Lagrange's equations of motion from Hamilton's principle - Principle of virtual work - D'Alembert's principle - Deduction of Lagrange's equations by D'Alembert's principle for both conservative system and non-conservative system - Deduction of Hamilton's principle from D'Alembert's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation: Linear harmonic oscillator, Simple pendulum, Compound pendulum.	13
IV	HAMILTONIAN FORMULATION OF MECHANICS View points of the new development - Phase space and the motion of systems - Hamiltonian - Hamilton's canonical equations of motion - Cyclic coordinates - Physical significance of H - Advantages of Hamiltonian approach - Deduction of canonical equations from variational principle - Applications of Hamilton's equations of motion; Simple Pendulum, Compound pendulum, Linear harmonic oscillator.	13

	HAMILTON - JACOBI FORMULATION	
V	Canonical or contact Transformations: Point Transformation, Canonical Transformation, Generating Function (Four forms) - Advantage of Canonical Transformations - Simple Harmonic Oscillator - Hamilton Jacobi method - Harmonic Oscillator problem by Hamilton Jacobi method - Particle falling freely - Hamilton Jacobi equation for Hamilton's Characteristic function - Kepler's Problem.	13

- Gupta S.N. (1970). *Classical Mechanics*. Meenakshi Prakashan Publications, Meerut, (Unit I).
- Gupta, Kumar, Sharma, (2006). *Classical Mechanics*. 21st Edition, Pragati prakasan, Meerut, (Units II V).

Reference Books

• Herbert Goldstein, (1985). *Classical Mechanics*. 2nd Edition, Narosa publishing House, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code	: 15 UPS 509	
Title	: Core IX: Relativity & Quantum Mechanics	Semester: V
Hrs/Week:	5	Credit: 5
Objectives	 To understand the concepts and the consequences of special and general theory of relativity. To understand the basic concepts of Quantum theory and the wave properties of particles. To understand the different types of quantum numbers and to apply the wave equation to solve simple problems 	

Unit	Content	Hrs
I	RELATIVITY Galilean transformations and their limitations - Search for an absolute frame of reference: Michelson Morley experiment - Einstein's postulates and Lorentz transformations - Length contraction, Time dilation and Simultaneity - Variation of Mass with velocity	13
II	Mass-energy equivalence with experimental evidence - Relation between total energy, particle momentum and rest energy - Relativistic Doppler effect - Cerenkov radiation - World point and world line in Minkowski space - Inertial and gravitational mass - Principle of equivalence - Qualitative discussion of bending of light - Precession of perihelion of mercury and gravitational red shift	13
III	QUANTUM MECHANICS WAVE PROPERTIES OF PARTICLES The deBroglie hypothesis – The deBroglie wavelength – Expression for group velocity – Experimental study of matter waves: Davisson and Germer's experiment - G.P.Thomson's experiment - Heisenberg's Uncertainty principle and its illustrations: Gamma ray microscope & Diffraction of a beam of electrons by a slit - Postulates of quantum mechanics - Properties of wave function	13
IV	SCHRÖDINGERS EQUATION AND ITS APPLICATIONS Time dependent and Time independent forms - Particle in a box: Infinite square well potential - Potential step - The barrier penetration problem - Linear Harmonic oscillator - The rigid rotator	13

	QUANTUM THEORY OF HYDROGEN ATOM Schrödinger's equation for the Hydrogen atom - Separation of	
	variables-Normalized wave functions - Expression for the	
V	energy of the electron in the ground state - Significance of	13
	Quantum numbers : Principal Quantum number , Orbital	
	Quantum number & Magnetic Quantum number - Electron	
	probability density - Radiative transitions - Selection rules	

- Murugesan R. (2003). *Modern Physics*. 11th Edition, S.Chand, NewDelhi, (Units I IV).
- Arthur Beiser, (1997). *Concepts of Modern Physics*. 5th Edition, Tata McGraw Hill, NewDelhi, (Unit V).

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st Edition, Addison Wesley.
- Mathews, Venkatesan, (2002). *A Text Book of Quantum Mechanics*, Tata McGraw Hill Company Ltd, New Delhi.
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*, Himalaya Publishing Company, New Delhi.

Department	Physics		
Course	BSc Physics	Effective f	
Subject Code:	15 UPS 510		
	Major Elective I: Basic Electronics & Circuit Systems	Semester:	V
Hrs/Week:	5	Credit: 5	
Objectives	 To know the basics of AC&DC circuits. To understand the action of semiconductor devices and their applications. To know the principle and working of optoelectronic devices. 		
Unit	Content		Hrs
I	DC CIRCUITS AND ALTERNATING CURRENT DC Circuits: Current, Voltage, Resistance, Ohr Joule's Law, Resistors and Batteries - Series and Circuits - Networks - Kirchoff Rules - Thevenin's Norton's Theorem - Maximum power transfer to Proportional Voltage and Current formula - D'Arson Ammeter, Voltmeter, Ohmmeter and Multimeter (Ba - Alternating currents: Frequency, Amplitude and RMS value and Power - Capacitance and Ind Transformer - Oscilloscope SEMICONDUCTOR DEVICES AND CIRCUITS Semiconductor and Energy bands - Doped Semiconductor	m's Law, d Parallel Theorem - heorem - val Meter, asic ideas) d Phase - uctance -	13
II	PN Junction diode and Zener diode - Characterists wave, Full wave and Bridge rectifiers - Capacitance pin regulated power supply - Voltage doublers - Cli Clampers - Transistor and action - Common Common emitter Configurations - Relations between Load line and Operating point - Stability - Voltage Self bias - JFET and its characteristics	ics - Half filter-Two ppers and base and α and β -	13
III	AMPLIFIERS & OSCILLATORS Principle of amplification - Classification of am Common emitter single stage amplifier and response - Multistage amplifiers (Basic ideas) - Classification description - Basic Oscillatory circlassification of oscillators - Hartley, Colpitts and Foscillators (Circuit operations) - Multivibrators Monostable and Bistable	frequency oncept of litative) - cuit and Phase shift	13
IV	OPERATIONAL AMPLIFIER Typical stages of an Op Amp - Ideal Op Acharacteristics - Input offset voltage, Offset current and Slew rate (Definitions) - Inverting Op Noninverting Op Amp - Differential Op Amp - Sphase changers - Adder and Averager - Splifferentiator and Integrator - Solving differential	rent, Bias o Amp - Scale and Subtractor,	13

V	OPTOELECTRONIC DEVICES Optical radiation - Flux and illumination - Structure, variation of resistance & speed response of a Photo detector - Photovoltaic cells - Photodiodes - Phototransistors - Light beam detector - Electronic slave flash control - Window detector - LED: Bar graph display, drivers and LED arrays - Optically coupled isolator (Basic ideas)	13
---	--	----

- James J.Brophy, (1990). *Basic Electronics for Scientists*. 5th Edition, McGraw Hill Publishing Company, New York, (Unit I).
- Sadasiva Biswal, (2001). *Basic Electronics (Vol.I)*. Atlantic Publishers and Distributors, (Units II &III).
- Swaminathan Mathu, (1985). *Electronics: Circuits and Systems*. 1stEdition, Howard W.Sams & Co., Inc, New York, (Units IV&V).

- Narayana Rao B.V., (1994). *Principles of Electronics (Vol. I & II)*. Wiley Eastern Limited & New Age International Limited, New York.
- Norman Lurch, *Fundamentals of Electronics*. 3rd Edition, John Wiley & Sons.
- Ramakant A.Gayakwad, (1997) *Op-Amps & Linear Integrated Circuits*. 3rd Edition, Prentice- Hall of India, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code : Title	15 UPS 511 Major Elective II: Digital Circuit Systems	Semester: V
		G 11. 5
Hrs/Week:	5	Credit: 5
Objectives	 To study the number system, Logic circuits and its application. To understand the concept of Memories and IC technology. 	

Unit	Content	Hrs
I	NUMBER SYSTEMS AND CODES Binary numbers - 1's and 2's complement - Addition - Subtraction - Multiplication - Division - Binary to Decimal conversion and vice versa - Octal numbers - Octal to Binary conversion and vice versa - Hexadecimal numbers - Hexadecimal to Binary conversion and vice versa - BCD - ASCII - Excess 3 code - Gray code LOGIC GATES OR, AND and NOT gates - NAND and NOR gates - Universal building blocks - XOR and XNOR gates	13
II	THEOREMS OF BOOLEAN ALGEBRA Demorgan's theorems - Laws and theorems of Boolean algebra - Simplification of Boolean expressions - Karnaugh map - Pairs, quads and octets - Sum of product method and simplifications - Don't care conditions - Product of sum method and simplifications ARITHMETIC PROCESSING CIRCUITS Half and full adders - Half and full subtractors - Parallel binary adder and subtractor	13
III	DATA PROCESSING CIRCUITS Multiplexers - Demultiplexers - 1 - of - 15 decoder - BCD to decimal decoder - Seven segment decoders - Encoders FLIP FLOPS AND SHIFT REGISTERS RS Flip Flop - D Flip Flop - Edge triggering - JK and Master slave Flip Flop - Serial in serial out - Serial in parallel out - Parallel in serial out - Parallel in parallel out shift register	13
IV	COUNTERS Asynchronous Mod 8 up and down counters - Decoding gates - Synchronous Mod 8 up and down counters - Mod 3, Mod 5, and Mod 10 counters - Presettable counter - Digital clock D/A and A/D CONVERSIONS Variable resistor network - Binary ladder - D/A Converter - A/D converter	13

V	SEMICONDUCTOR MEMORIES Memory addressing - ROM's, PROM's and EPROM's - Expansion of ROM capacity - Static and Dynamic RAM's IC TECHNOLOGY Integrated circuits - Resistors, Diodes and BJT'S in IC's - Design rules for monolithic circuit - Fabrication of monolithic IC's	13
---	--	----

- Malvino A.P, Leach D.P. (2000). *Digital Principles and Applications*. 4th Edition, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, (Units I V).
- Swaminathan Madhu, (1985). *Electronic Circuits and Systems*. 1st Edition, Howard W. Sams & Co., Inc-A publishing subsidary of ITT, (Unit V).

Reference Books

• Jacob Millman, Halkias C. (1985). *Integrated Electronics*. 1st Edition, Mc Graw Hill Publishing Company.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code	: 15 UPS 612	Compostory VI
Title	: Core X: Mathematical Physics	Semester: VI
Hrs/Week:	5	Credit: 5
Objectives		
	➤ To study and apply various mathematical concepts to solve physical problems.	

Unit	Content	Hrs
I	VECTORS Gradient of a scalar field – Line, Surface and Volume integrals – Divergence of a vector function – Curl of a vector function and its physical significance – Important vector identities – Gauss divergence theorem – Stokes theorem – Curvilinear co-ordinates – Cylinderical co-ordinates (r,θ) – Spherical polar co-ordinates (r,θ,Φ) – Grad, Divergence and curl in terms of curvilinear, cylindrical and spherical polar co- ordinates	13
II	MATRICES AND LINEAR SYSTEM OF EQUATIONS Eigen values, Eigen vectors; Characteristic equation of a matrix - Finding inverse of a matrix using Cayley Hamilton Theorem - Some important theorems of eigen values and eigen vectors - Matrices in Physics: Rotation matrix - Pauli spin matrix - Dirac matrix	13
III	LAPLACE TRANSFORM Laplace transform – Properties of Laplace transforms – Problems – Inverse Laplace transform : Properties of Inverse Laplace transform – Convolution theorem – Evaluation of Inverse Laplace transforms by convolution theorem - Problems	13
IV	GROUP THEORY Concept of a group - Abelian group - Generators of finite group - Cyclic group - Group multiplication table (Qualitative analysis) - Group of symmetry of a square - The Rearrangement theorem - Subgroups - Lagrange's theorem for a finite group - Cosets- Conjucate elements and classes - Product of classes - Complexes - Conjugate subgroups, Normal subgroups and factor groups - Isomorphism and Homomorphism - Permutation Groups	13
V	NUMERICAL METHODS Solution of algebraic and transcendental equations: The Bisection method -The iterative method - Method of false position - Newton-Raphson method - Solution of ODE: Taylor's series method - Euler's method - Runge Kutta II order method - Trapezoidal Rule - Simple problems	13

- Sathyaprakash, (2005). *Mathematical Physics*. Sultan Chand & Sons, New Delhi, (Units I IV).
- Sastry S.S. (2003). *Introductory Methods of Numerical Analysis*. 3rd Edition, Prentice Hall Of India, (Unit V).

- Gupta B.D. (1989). *Mathematical Physics*. 3rd Edition, Vikas Publication House, Noida.
- Louis A.Pipes, Lawrence R.Harvill, (1970). *Applied Mathematics For Engineers And Physicists* Mc Graw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). Mathematical Physics. Wiley Eastern Limited, New Delhi.
- Venkataram M.K. *Numerical Methods in Science and Engineering*. The National Publishing Company, New Delhi.
- Raman K.V. *Group Theory*. Tata McGraw Hill publishing company Ltd, New Delhi.

Department	Physics		
Course	BSc Physics	Effective f	
Subject Code : Title :	15 UPS 613 Core XI: Atomic & Nuclear Physics	Semester:	VI
Hrs/Week:	5	Credit: 5	
Objectives	 To understand the concept of electron, and the structure of the atom To explore the origin of X-rays and its applications. To understand the properties of the nucleus and nuclear models. To know the concept of radioactive phenomena and nuclear reactions. To acquire knowledge about particle detectors, accelerators and elementary particles. 		
Unit	Content		Hrs
I	CONCEPT OF ELECTRON Charge of electron by Millikan's oil drop method - J.J Thomson's method to determine e/m - Positive rays - Isotopic constitution of elements - Photoelectric effect - Experimental investigations - Einstein's equation - Millikan's experiment. STRUCTURE OF THE ATOM Bohr's theory of Hydrogen atom - Excitation & Ionisation potentials - Experimental verification of discrete atomic energy levels - Correspondence principle - Sommerfeld model & Relativistic effects - Hyperfine structure - Vector atom model - Quantum numbers - Coupling schemes - Pauli exclusion principle - Electronic configuration of an atom .		13
II	X-RAYS Origin of X rays - Production & detection - Pr Diffraction of X rays (Laue spots) - Bragg's Law - I ray Spectrometer - Determination of crystal stru Powder crystal method - Continuous and Characteric spectrum - Mosley's Law and significance - T Compton Scattering - Experimental verificat Applications of X rays (Basic ideas)	Bragg's X ucture by stic X ray Theory of	13
III	NUCLEAR MODELS Properties of nucleus - Binding energy of the nu packing fraction - Nuclear stability - Nuclear mode drop model and Semi empirical mass formula - Sh (Qualitative ideas). RADIOACTIVITY The law of radioactive decay and decay rate - Hal Mean life - Alpha decay: spontaneous decay characteristics - Beta decay: Condition for spontaneous Characteristics of beta ray spectra - Gamma decay: Gemission - Internal conversion.	ls: Liquid nell model of life and of General us decay -	13

	NUCLEAR REACTIONS, DETECTORS AND		
	ACCELERATORS		
	Nuclear reaction energy - Reaction cross section -		
	Nuclear fission - Energy released in fission of U ²³⁵ - Chai		
IV	reaction - Fission reactor - Nuclear fusion - Fusion reaction -	13	
	Advantages and problems of fusion.		
	Ionization chamber: Simple Ionization chamber -		
	Proportional counter - GM counter - Scintillation counter -		
	Linear accelerator – Cyclotron.		
	ELEMENTARY PARTICLES AND COSMIC RAYS		
	Fundamental forces in nature - Classification of elementary		
	particles based on interactions - Conservation laws - Strange		
V	particle and Strangeness - Quarks - Quark model - Cosmic rays	13	
	- Primary and Secondary cosmic rays - Cosmic ray showers -		
	Positron - Pair production - Annihilation of matter - Mesons -		
	Origin of cosmic rays.		

- Rajam J.B. Prof.Louis De Broglie, (2000). *Atomic Physics*, Sultan Chand & Sons, New Delhi, (Units I & II).
- Raymond A. Serwey, Clement J. Moses & Curt Moyer, *Modern Physics*. 2nd edition, Saunders College Publishers, (Units III & IV).
- Atam P.Arya, *Elementary Modern Physics*. Addition Wesley publishing Company, (Unit IV)
- Murugeshan R, (2009) *Modern Physics*, S. Chand and Company Ltd, 14th edition, New Delhi, (Unit V).

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st edition, Addision Wesley.
- Sehgal Chopra, (2004) *Modern Physics*. 9th edition Sultan Chand & Sons, New Delhi.
- Pandya M.L. Yadev R.P.S, *Elements of Nuclear Physics*. 5th editions, KedarNath RamNath Publications.
- Tayal D. C. (1987). *Nuclear Physics* 4th edition, Himalaya Publishing House Publishers, New Delhi.

Department	Physics		
Course	BSc Physics	Effectiv	e from
		the year	r: 2015
Subject Code:			
Title :	Core XII: Condensed Matter Physics & Statistical	Semeste	er: VI
	Mechanics	~	_
Hrs/Week:	5	Credit:	5
Objectives	To understand the concepts of bonding in		
	solids and various physical parameters to		
	characterize crystals.To understand the electrical and magnetic		
	properties of solids.		
	To understand the occurrence of		
	superconductivity and its applications.		
	To understand the concepts of phase space,		
	ensemble and their usage in various statistical		
	distribution methods		
Unit	Content		Hrs
	BONDING IN SOLIDS		
	Bonding in solids - Ionic bonding - Covalent bond - Met		
	bond - Intermolecular bonds - Dispersion bonds - Dipole	2	
	bonds - Hydrogen bonds (Formation and properties)		
_	CRYSTAL PHYSICS		10
I	Lattice points and space lattice - Unit cells and		13
	parameters - Crystal systems - Symmetry elements in cr		
	The Bravais lattices - Metallic crystal structures - R		
	between the density of crystal material and lattice constant cubic lattice - Other cubic structures - Miller Inc		
	Reciprocal lattice (Construction only)	iices -	
	ELECTRICAL PROPERTIES OF SOLIDS		
	Classical free electron theory of metals and its draw be	nacks -	
	Quantum theory of free electrons - Joule's law - Hall e		
	Experimental determination of Hall coefficient - Band		
	of solids - Electron in a periodic field of a crystal (the	•	
***	- Penney model) - Brillouin zones		10
II	MAGNETIC PROPERTIES OF SOLIDS		13
	Different types of magnetic materials - Langevin's C		
	theory of diamagnetism - Langevin's and Weiss the	-	
	paramagnetism - Weiss molecular field theo	•	
	ferromagnetism - Domain theory of ferromagnet	tısm -	
	Antiferromagnetism -Ferrimagnetism		
	SUPERCONDUCTIVITY		
	Properties of superconductors - Effects of magnetic		
III	Persistent current - Critical current - The Meissner et		
	Isotope effect - Penetration depth - Type I and T		13
	superconductors - Electronic specific heat - Energy		
	measurements - BCS theory - Josephson tunneling (
	ideas only) - High temperature superconductors - Appli of superconductivity (simple ideas only)	cauons	
	or superconductivity (simple ideas only)		

IV	CLASSICAL STATISTICAL MECHANICS Phase space of a microscopic particle - Density of quantum states of energy of a particle - Volume occupied by a quantum state - Isolated system - Statistical equilibrium - Statistical postulates - Distribution function, entropy and probability - Maxwell - Boltzmann statistics and its application - Total internal energy - Specific heat at constant volume - Speed	13
	distribution - Most probable speed, average, root mean square speeds – Doppler broadening of spectral lines	
V	QUANTUM STATISTICAL MECHANICS Bose-Einstein energy distribution - Basic postulates - B-E energy distribution function - B-E energy distribution law for continuous variation of energy - Planck's law of radiation - Fermi - Dirac energy distribution - Basic postulates - Energy distribution function - Fermi energy - Energy distribution curve - Expression for the Fermi Energy for electrons in a metal - Fermi temperature and Fermi velocity - Thermionic emission - Richardson Dushman equation - Comparison of M-B, B-E and F-D statistics	13

- Pillai S.O. (2005). *Solid State Physics*. 6th Edition, New age international (P) Ltd, New Delhi, (Units I III).
- Serway R. Moses C. Moyer C.A. (1997). *Modern Physics*. 2nd edition, Saunders college publishers, (Unit III).
- Kamal Singh, Singh S. P. (1985). *Elements Of Statistical Mechanics*. 1st Edition, S.Chand & Company Ltd, NewDelhi, (Units IV &V).

- Agarwal B.K. Melvin Eicher, (1975). *Statistical Mechanics*. Wiley Eastern Ltd, Bangalore.
- Gupta S.L. Kumar V. (1987). *Solid State Physics*. 6th Edition, K.Nath & Co., Meerut.

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2015
Subject Code:	15 UPS 615	
Title :	Major Elective III: Microprocessor Mechanisms	Semester: VI
	& Programming in C	
Hrs/Week:	5	Credit: 5
Objectives	➤ To know the architecture & instruction set	
	of Intel 8085 Microprocessor.	
	➤ To familiarize different schemes of data	
	transfer & learn a few applications of 8085.	
	To become familiar with C programming	
	language.	
	➤ To realize the efficiency & power of C	
	language.	

Unit	Content	
I	MICROPROCESSOR ARCHITECTURE AND PROGRAMMING Organization of a Microcomputer system – Architecture of the 8085 - Microprocessor instruction set and computer languages - Overview of the 8085 instruction set: Data transfer, Arithmetical, Logical, Branch, Stack, I/O & Machine control groups - Addressing modes - Programming the 8085: The programming process - The stack and subroutines - Simple programming examples	13
	INTERFACING MEMORY AND I/O DEVICES	
II	Address space partitioning - Data transfer schemes - Programmed data transfer: Synchronous transfer - Asynchronous transfer - Interrupt driven data transfer - Multiple interrupts - Enabling, disabling and masking of interrupts - Direct Memory Access data transfer APPLICATIONS OF MICROPROCESSOR Temperature monitoring system (Brief description) - Closed loop process control: The process of growing synthetic Quartz	13
	(Qualitative ideas only)	
III	INTRODUCTION TO C Basic Structure of C Programs - Character set - Key words and Identifiers - Constants - Variables - Data types - Declaration of variables - Assigning values to variables - Defining symbolic constants - Arithmetic operators - Relational operators - Logical operators - Assignment operators - Increment and decrement operators - conditional operators - Precedence of operators - Formatted input & output statements	13

	CONTROL STRUCTURES, ARRAYS & STRINGS	
IV	Simple if - ifelse - Nesting of ifelse - else if ladder - Switch - while - dowhile - for statements - Declaration and initialization of one & two dimensional arrays - Declaring and initializing string variables - String handling functions	13
V	FUNCTIONS, STRUCTURES AND POINTERS Definition of functions - Return values and their types - Category of functions: No arguments and no return values - Arguments but no return values - Arguments with return values - Recursion - Defining a structure - Declaring structure variables - Accessing structure members - Structure initialization - Declaring and initializing pointers - Pointers as function arguments - Pointers and structures	13

- Aditya P.Mathur, (1997). *Introduction To Microprocessor*. 3rd Edition, Tata McGrawHill, New Delhi, (Units I & II).
- E.Balagurusamy, (2004). *Programming In Ansi C*. Tata McGraw Hill Publishing Company, New Delhi, (Units III V).

- Ramesh S.Gaonkar, (1997). *Microprocessor Architecture, Programming And Applications With The 8085*. 3rd Edition, Penram International Publishing, India.
- Ravichandran.D, (1998). *Programming In C*. New Age International (P) Limited Publishers.
- Yashvant Kanetkar, (1995). *Let Us C*. 2nd Revised Edition, BPB Publications, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2015
Subject Code:	15 UPS 6S3	
Title :	Skill based Elective II: Environmental	Semester: VI
	Instrumentation	
Hrs/Week:	1	Credit: 2
Objectives	 To provide good foundation and inspire interest to gain knowledge in Thermal measurements. To understand the operational features, limitations and difficulties inherent in the instruments. 	

Unit	Content	
I	TEMPERATURE MEASUREMENTS Temperature scales - The ideal gas - Thermometer - Temperature measurement by mechanical effects - Temperature measurements by electrical effects : Electrical resistance thermometer - Thermistors - Thermoelectric effects - Quartz- crystal thermometer - Liquid crystal thermography	3
II	RADIATION MEASUREMENTS Radiation pyrometers – Blackbody conditions – Radiation reactive elements – Total radiation pyrometers – Infrared pyrometers – Optical pyrometers	3
III	THERMAL MEASUREMENTS Detection of thermal radiation – Measurement of emissivity – Reflectivity and Transmissivity measurements – Solar radiation measurements	2
IV	NUCLEAR RADIATION MEASUREMENTS Detection of Nuclear radiation – Geiger Muller Counter – Ionisation chambers – The Scintillation counter – Neutron detection.	2
V	AIR POLLUTION SAMPLING AND MEASUREMENTS Units of pollution measurements – General air sampling traingas sampling techniques – Sulfur dioxide measurements – Combustion products measurements – Opacity measurements	3

- Sawhney A. K. Puneet Sawhney, (2004), A Course in Mechanical Measurements and Instrumentation, Dhanpat Rai & Co Pvt Ltd, (Units I & II).
- Jack P. Holman, (2000), *Experimental Methods for Engineers*, Tata McGrawHill, New Delhi, (Units III V).

Reference Book

• Rangan C. S. Sharma G. R. Mani V.S.V. (1983), *Instrumentation Devices and Systems*, Tata McGrawHill, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2015
Subject Code:	15 UPS 6S4	Semester: VI
Title :	Skill based Elective II: Fundamentals of Astrophysics	
Hrs/Week:	1	Credit: 2
Objectives	> To get acquainted with the latest aspects of	
	Astrophysics which have come out so far in the	
	transition period.	

Unit	Content	Hrs
I	OUR PLACE IN THE UNIVERSE A tour of the Universe – Scale and Contents: Planets, Stars, Galaxies, Light years and the Interstellar medium	2
II	OBSERVATIONAL ASTRONOMY The Electromagnetic spectrum - Geometrical Optics: Ray Diagrams, Focal length, Magnification - Diffraction: Resolving Power, Airy Disc, Diffraction Limit - Telescopes: Reflecting, Refracting, Multiwavelength.	3
III	STARS Properties of stars – Stellar structure and Evolution – Introduction to supernovae – Stellar remnants – White dwarfs – Neutron stars – Black holes	2
IV	QUASARS Constituents of Galaxies - General structure - Mass of the Galaxy - Cosmic Rays - External Galaxies: Classification and Spectra of Galaxy - Active Galaxies and Quasars.	3
V	COSMOLOGY Red shift and Expansion of the Universe – Hubble's Law – The Age of the Universe – The Big Bang – Introductory to Cosmology: The Cosmological Principle, Homogeneity and Isotropy, Olber's Paradox – Introductory to Cosmological Models: Critical Density, Geometry of Space, The fate of the Universe – Dark energy and the Accelerating Universe.	3

• Baidyanath Basu, Tanuka Chattopadhyay, Sudhindra Nath, (2010) *An Introduction to Astrophysics*. PHI Learning Private Limited. New Delhi, (Units I – V).

Reference Book

• Abhyankar, K.D. (1999). *Astrophysics of The Solar System*, University Press Limited. Hyderabad.

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2015
Subject Code	: 15 UPS 615	Semester: V & VI
Title	: Core XIII: Electronics Lab	Beiliester. V & VI
Hrs/Week:	3	Credit: 3
Objectives	> To provide a basic grounding in the field of	
	Electronics and to serve as a hint for the	
	student to the more advance techniques.	

Cycle	Content	Hrs
I	1.Rectifier diode and Zener diode characteristics 2.Rectifiers and Filters	12
1	3.CRO Familiarization	12
	1. Verification of Thevenin's theorem	
II	2.Two pin regulated power supply	12
	3.Transistor characteristics - Common Base mode	
111	1. Verification of Norton's theorem	
III	2.Measurement of Band gap energy of Semiconductors	10
	3.Transistor characteristics - Common Emitter mode	12
IV	1. Verification of Maximum power transfer theorem	
1 V	2.Voltage doubler	12
	3.Transistor voltage amplifier - Single stage	
V	1. Astable Multivibrator	
v	2.JFET - characteristics	12
	3.Inverting and Non-inverting Operational amplifiers	
VI	1.Hartley Oscillator	
V 1	2.Adder and Subtractor using Operational amplifier	12
	3.Colpitts Oscillator	

- Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India,Ltd, New Delhi. Reference Books
 - Paul B.Zbar, Joseph Sloop, (1997). *Electricity & Electronics Fundamentals : A Text-LabManual*. Mc.Graw Hill, New Delhi.
 - Woollard G. (1984). *Practical Electronics*. 2nd Edition,Mc.Graw Hill, New Delhi.
 - Bhargowa N.N. (1984). Basic Electronics And Linear Circuits. Tata Hill Publishing Co.Ltd.

Department	Physics		
Course	BSc Physics	Effective f	
Subject Code:		Semester:	V & VI
Title :	Core XIV: Digital & Microprocessor Lab		ν ω ν1
Hrs/Week:	3	Credit: 3	
Objectives	> To be acquainted with the basics and working		
	of Electronic Digital circuits and		
	Microprocessor.		
Cycle	Content		Hrs
	1. Study of Various logic gates using ICs and basic logic	ogic gates	
I	using discrete components		12
1	2. Study of NAND and NOR as Universal building block	S	12
	3. Microprocessor - Addition and Subtraction		
	1. Construction and Study of Half and Full adders		
II	2. Verification of Demorgan's theorems and problem	n solving	12
11	through logic circuits		12
	3. Microprocessor - 1's and 2's complement		
III	1. Construction and Study of Half and Full Subtractors		
	2. Construction and Study of RS, D and JK flip-flops		12
	3. Microprocessor - Multiplication		
IV	1. Construction and Study of Parallel binary adder		
1 4	2. Construction and Study of Multiplexers and Demultipl	exers	12
	3. Microprocessor - Ascending and Descending orders		
	1. Construction and Study of Parallel binary Subtractor		
V	2. Construction and Study of Shift registers		12
	3. Microprocessor - Addition of an array of num	bers and	12
	comparison of two numbers		
VI	1. Construction and Study of MOD 3 and MOD 5 up cou	nters	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2. Construction and Study of BCD to decimal decoder		12
	3. Microprocessor - Division		

- Albert Paul Malvino, Donald P. Leech, (1987). *Digital Principle And Applications*. 3rd Edition, Mc.Graw Hill.
- Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New York.

- Leech, (1986). *Experiments In Digital Principles*. 3rd Edition, Mc.Graw Hill, New York.
- Paul B.Zbar, Malvino, Sloop, (1997). *Electricity & Electronics Fundamentals: A Text-Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition,Mc.Graw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd, New Delhi.
- Bhargowa N.N. (1984). *Basic Electronics And Linear Circuits*. Tata Hill Publishing Co Ltd, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2015
Subject Code : Title :	15 UPS 618 Core XV: Computer Lab in C	Semester: VI
Hrs/Week:	2	Credit: 2
Objectives	➤ To become familiar with C programming language.	

Content	Hrs	
1. Temperature Conversion		
2. Largest /Smallest of three numbers		
3. Quadratic equation		
4. Fibonacci number		
5. Armstrong number		
6. Electric Power Consumption		
7. Ascending/Descending order		
8. Matrix Addition/ Subtraction	36	
9. Matrix multiplication		
10. Sorting of names		
11. Multiplication Table		
12. Function with arguments and with return values		
13. Recursion function		
14. Pointer to Structure		
15. Pointer as function arguments		

• Balagurusamy E. (2004). Programming In Ansi C. Tata McGraw Hill Publishing Company, New Delhi.

- Ravichandran D. (1998). *Programming In C*. New Age International (P) Limited Publishers.
 Yashvant Kanetkar, (1995). *Let Us C*. 2nd Revised Edition, BPB Publications, New Delhi.

Department	Physics	
Course	B.Sc. Mathematics & Chemistry	Effective from the year: 2015
	15 UMS 3A3 / 15 UCY 3A3	
Title :	Physics For Mathematics & Chemistry- I	Semester: III
Hrs/Week:	5	Credit: 4
	➤ To understand the concepts & phenomena of	
	Electric field.& Electromagnetic induction	
Objectives	To understand the mechanism of energy	
Objectives	transfer in the form of waves	
	➤ To provide the basic knowledge in	
	semiconductor theory and digital electronics	

Unit	Content	Hrs
I	ELECTRICITY AND MAGNETISM Electric field, Intensity & Potential - Potential due to a charged conducting sphere - Capacitance - Parallel plate capacitor - Energy stored in a charged capacitor - Kirchoff's law - Wheatstone's bridge - Potentiometer - Measurement of Resistance & EMF - Calibration of Ammeter & Voltmeter - Biot Savart law - Field along the axis of a circular coil - Determination of M & H - Electromagnetic induction - Self and Mutual induction - Induction coil, Transformer & Choke (Basic ideas)	13
II	WAVE OPTICS Young's double slit experiment - Coherent sources - Theory of interference fringes - Interference due to reflected light (Thin films) - Colours of thin films - Newton's rings - Determination of λ and μ - Theory of plane transmission grating - Determination of λ of Mercury light - Plane polarized light - Nicol prism as Analyzer and Polariser - Optical activity - Laurent's half shade Polarimeter	13
III	SEMICONDUCTOR PHYSICS Semiconductor - Intrinsic and Extrinsic semiconductors - Junction diode and Zener diode characteristics - Half & Full wave Rectifiers - Regulated power supply - Transistor and its action - Common base and common emitter configurations - Relations between α and β - Load line and Operating point - Stability	13

IV	NUMBER SYSTEMS, LOGIC GATES AND ARITHMETIC CIRCUITS Binary number - Addition, Subtraction, Multiplication & Division - Octal & Hexadecimal numbers - Interconversions - BCD numbers - ASCII codes - OR, AND & NOT gates using Discrete components and ICs - NOR & NAND gates - Universal building blocks - Demorgan's theorems - XOR & XNOR gates - Laws and theorems of Boolean algebra - Simplification of Boolean expression - Half & full adders - Half & full subtractors	13
V	FLIP FLOPS RS - D - JK - Master/Slave COUNTERS Mod 8 Ripple counter (up and down) - Mod 10 counter MEMORIES (Basic ideas) Memory addressing - ROM, PROM and EPROM - RAM	13

- Murugeshan R, (2008). *Electricity and Magnetism*, S.Chand & Company Ltd, New Delhi, (Unit I).
- Brijlal and Subramaniam, (1999). *A Text Books Of Optics*. S.Chand & Company Ltd, New Delhi, (Unit II).
- Theraja B.L, (1998). *Basic Electronics Solid state*. S.Chand & Company Ltd, New Delhi, (Unit III).
- Malvino and Leech, (1986). *Digital Principles and Applications*. Tata Mc Graw Hill Publishing Company, New Delhi (Units IV & V).

- Brijlal and Subramaniam, (1987). *Electricity and Magnetism*, S.Chand & Company Ltd, New Delhi.
- Sadasiva Biswal, (2001). *Basic Electronics*. Atlantic Publishers and Distributors.
- Narayana Rao B.V. (1994). *Principles of Electronics*. Wiley Eatern Limited New Age International Limited.

Department	Physics	
Course	B.Sc. Mathematics & Chemistry	Effective from the year: 2015
3	: 15 UMS 4A4 / 15 UCY 4A4 : Physics For Mathematics & Chemistry- II	Semester: IV
Hrs/Week:	5	Credit: 4
Objectives	 To understand the properties of atom and the nucleus To provide basic concepts and methodology of quantum mechanics. To study the basic concepts of special theory of relativity and the emergence of Einstein's Mass energy equivalence To acquire basic knowledge in the Field of Laser and Fiber optic technology 	

Unit	Content	Hrs
I	ATOMIC PHYSICS Discharge of electricity through rarified gases - Cathode rays - Properties - Determination of charge of electron by Millikan's oil drop method -Positive rays - Thomson parabola method - Rutherford atom model - Bohr atom model - Hydrogen spectral series - Critical potentials - Sommerfield atom model - Vector atom model (qualitative) - Pauli's exclusion principle	13
II	NUCLEAR PHYSICS Basic properties of nucleus - Binding energy, Mass defect and Nuclear force - Liquid drop model - Law of radioactivity - Half life and Mean life - Radioactive dating - α , β and γ decay process (Basic ideas) - Nuclear fission - Chain reaction & Atom bomb - Nuclear reactors - Nuclear fusion & Sources of stellar energy - Thermonuclear reactions & Hydrogen bomb	13
III	QUANTUM PHYSICS Black body radiation and Planck's hypothesis - Photoelectric phenomena and Experimental investigations - Einstein's equation and Millikan's experiment - De Broglie's concept of Matter waves and De Broglie wavelength – G.P.Thomson Experiment - Uncertainty Principle - Postulates of wave mechanics - Wave function and significance - Schrodinger equation (one dimensional) - Eigen values and Eigen functions	13

	SPECIAL THEORY OF RELATIVITY	
IV	Frames of reference - Newtonian Relativity - Michelson Morley experiment and explanation for negative results - Postulates of special theory of relativity - Lorentz transformation - Time dilation - Length contraction - Addition of velocities - Variation of mass with velocity - Equivalence of mass and energy	13
V	LASER OPTICS Concept of energy levels - Einstein's coefficients (qualitative) -Population inversion - Pumping methods - Essential elements and Action of laser system - Characteristics - Holography and Lasers in medicine (Basic ideas) FIBER OPTICS Construction and types of optical fiber - Critical angle - Propagation of light through optical fiber - Optical fiber configurations - Acceptance angle, Acceptance cone and Numerical aperture - Fiber optic communication system	13

- Murugesan R. (2001). Modern Physics. S.Chand & Company Ltd, New Delhi, (Units I III).
- Pedrotti L. & Pedrotti S. (2008). *Introduction To Optics*. Prentice Hall international Edition, New Delhi, (Unit IV).
- Wayne Tomasi and Vincent F.Alisouskas. (1988). *Telecommunications*. Prentice Hall International, New Delhi, (Unit -V).

- Arthur Beiser, (2003). Concepts of Modern Physics. Addison Wesley Pvt Ltd.
- Raymond.A.Serway, (2007). *Physics For Scientists And Engineers*. Saunders College Publishing (Harcourt Brace College Publishers).

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2015
Subject Code:	15 UMS 4A5 / 15 UCY 4A5	Semester: III & IV
Title :	Physics Lab For Mathematics & Chemistry	Semester. III & IV
Hrs/Week:	3	Credit: 4
Objectives	> To make the students understand the	
	theoretical background by performing	
	experiments.	

Cycle	Content	Hrs
	1. Refractive index of a Prism - Spectrometer	
	2. Refractive index of a Lens - Newton's Rings	
	3. Specific resistance of a Wire - Potentiometer	
	4. Horizontal Component of Earth's Magnetic Field (H) - Field	
	along the axis of a Circular coil carrying current	
I	5. Characteristics of PN Junction Diode	24
	6. Basic Logic Gates - Discrete Components & ICs	
	7. Demorgan's Theorems and Problem solving in Boolean	
	Algebra through Logic Circuits	
	8. Half & Full Adder	
	9. NAND as Universal building block	
	1. Refractive index of a Prism – i d Curve - Spectrometer	
	2. Wavelength of Mercury source – Grating - Normal incidence –	
	Spectrometer	
	3. Calibration of Low range Voltmeter and Ammeter -	
	Potentiometer	
II	4. Magnetic Moment (M) - Field along the axis of a Circular coil	24
11	carrying current	∠ 4
	5. Characteristics of Zener Diode	
	6. Rectifiers & Filters	
	7. Two pin Regulated Power supply	
	8. Half & Full Subtractors	
	9. NOR as Universal building block.	

 Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.