Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code : Title	16 UPS 101 Core I: Properties of Matter	Semester: I
Hrs/Week:	3	Credit:3
Objectives	 To understand the basic concepts of gravitation. To get exposure to the properties of liquids & solids 	

Unit	Content	Hrs
Ι	GRAVITATION Kepler's laws - Newton's law of gravitation - Gravitational constant : Boy's Method - Gravitational field and Gravitational potential - Potential energy - Escape velocity - Equipotential surface - Earthquakes - Seismic waves - Determination of the Epicenter and the focus - Applications of Seismology	8
Π	ELASTICITY Stress and Strain - Hooke's law - Types of Elasticity - Relation connecting the Elastic constants - Poisson' s ratio - Torsional pendulum - Determination of Moment of Inertia : The Inertia Table - Bending of beams - Bending moment – Depression of a beam Supported at the ends	8
III	VISCOSITY Viscosity - Coefficient of viscosity - Poiseuille's equation for the flow of liquid through a horizontal capillary tube – Experimental determination of coefficient of viscosity for a liquid - Motion in a viscous medium: Stoke's law - Determination of coefficient of viscosity of highly viscous liquid - Stoke's method - Rotation viscometer	8
IV	SURFACE TENSION Surface tension - Surface energy - Excess pressure inside a liquid drop and soap bubble - Determination of surface tension of a bubble - Capillary rise - Energy required to raise a liquid in a capillary tube - Experimental study of variation of surface tension with temperature	8
V	DIFFUSION AND OSMOSISDiffusion - Fick's law - Graham's law of diffusion of gases - Osmosis and osmotic pressure - Laws of osmotic pressure - Experimental determination of osmotic pressure	7

• Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Units I - V).

- Brijlal & Subramaniam, (2000). *Properties Of Matter*. Vikas Publications house, New Delhi.
- Murugesan R. (1995). *Properties Of Matter*. S.Chand & Company Ltd, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
		the year. 2010
Subject Code : Title	16 UPS 102 Core II: Mechanics & Sound	Semester: I
Hrs/Week:	3	Credit:3
Objectives	 Understand principles of rigid body dynamics and Projectile motions, Understand statics, hydrostatics and hydrodynamics 	

Unit	Content	Hrs
Ι	Rigid body dynamics Rigid body–rotational and vibrational motion –Torque– moment of inertia – radius of gyration –kinetic energy of rotation– M.I. of a fly wheel– experimental determination– precession–M.I. of a diatomic molecule–its rotational energy states.	8
Ш	ProjectilesProjectiles – Range – Expression for the range of projectile on the inclined plane – path of a projectile – Impulse – Direct and oblique impact – Expression for velocity after direct impact – Loss of energy during direct and oblique impact.	7
III	StaticsForce of friction –Limiting friction – Laws of friction –Angleof friction and resultant reactionHydrostaticsDefinition and determination of centre of pressure –Expression for centre of pressure of a rectangular lamina withone side on the surface of the liquid – Laws of floatation–Definition for metacentre and metacentric height.HydrodynamicsSteady or streamline flow – Lines and tubes flow – Equationof continuity of flow–Bernoulli's theorem.	8
IV	Sound Classification of Sound - Musical sound and Noise – Speech – Human voice – Human Ear – Characteristic of Musical Sound – Intensity of Sound – Measurement of Intensity of Sound – Decibel – Phon(Definitions only) – Velocity of Transverse waves along a stretched string – Laws of transverse vibration of strings – Melde's experiment – Resonance.	8
V	Acoustics and UltrasonicsIntroduction – Reverberation – Sabine's Reverberationformula – Determination of Absorption coefficient – Factorsaffecting Acoustics of buildings – Sound distribution in anAuditorium – Requisites for good acoustics – Ultrasonics –Production of Ultrasonics – Magnetostriction Oscillator –Piezoelectric oscillator – Detection of Ultrasonic waves –Acoustic grating – Applications.	8

- Mathur D.S. (1996). *Mechanics*. S.Chand & Company Ltd, New Delhi, (Units I & III).
- Venkataraman M.K. (2014). Dynamics. Agasthiar Publications, Trichy, (Unit II).
- Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Unit III).
- Brijlal. N. Subramaniam. (2002). *Text Book of Sound*. Vikas Publications house Pvt Ltd, NewDelhi, (Unit IV & V).

- Chakraborthy. B. K. (2001.)Mechanics and General properties of matter, (2001). Books & Allied (P) Ltd, .
- Rajendran. V, Marikani. A.(1997) *Applied Physics for Engineers*. Tata Mc-Graw Hill, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
Subject Code : 16 UPS 203Title: Core III: Heat & Thermodynamics		Semester: II
Hrs/Week:	5	Credit: 5
Objectives	 To understand the basic nature of heat. To apply the laws of thermodynamics to simple thermodynamical problems 	

Unit	Content	Hrs
I	ContentTHERMOMETRY AND SPECIFIC HEATSConcept of heat and temperature - Thermoelectricthermometer - Absolute zero and Ice point - Lowtemperature measurement - High temperature measurement -Specific heat of a gas - C_p & C_v - Determination of C_v byJoule's differential steam calorimeter - Determination of C_p by continuous flow electrical method - Dulong and Petit'slaw - Variation of Specific heat and Atomic heat withtemperature - Einstein's theory of specific heat - Debye's	13
п	theory of specific heatKINETIC THEORY OF GASESKinetic theory of gases - Postulates - Derivation of gasequation - Maxwell's law of distribution of velocities -Experimental verification - Mean free path - Application ofmean free path in determination of viscosity and thermalconductivity - Degrees of freedom and Maxwell's law ofequipartition of energy - Vander waal's equation of state -Critical constants - Corresponding states of matter	13
III	TRANSMISSION OF HEAT Thermal conductivity - Forbe's method - Radial and cylindrical flow of heat - Thermal conductivity of rubber - Stefan's law and experimental verification - Determination of Stefan's constant - Blackbody - Properties of thermal radiation - Distribution of energy in the spectrum of a black body - Planck's law of black body radiation and	13
IV	significanceLOW TEMPERATURE PHYSICSPorous Plug experiment and theory - Cascade process - Liquefaction of Oxygen - Air (Linde's process) - Hydrogen (Cascade process) - Liquefaction of Helium - K.Onnes method - Helium I and Helium II - Production of low temperature - Adiabatic demagnetization - Conversion of magnetic temperature to Kelvin temperature - Helium vapour pressure thermometer - Electrolux refrigerator	13
V	THERMODYNAMICS Zeroth law of thermodynamics - Thermal equilibrium - Comparison of heat and work - First law of thermodynamics - Isothermal and Adiabatic process - Work done during Isothermal and Adiabatic process - Reversible and Irreversible process - Carnot's reversible engine - Carnot's	13

theorem - Second law of thermodynamics - Entropy :
Reversible and Irreversible process - Third law of
thermodynamics - Temperature - Entropy diagram -
Maxwell's thermodynamic relations

• Brijlal and Subrahmanyam. (2000). *Thermodynamics and Statistical Mechanics*. Sultan & Chand & Co Ltd, NewDelhi, (Units I–V).

- Kakani S.L. (2001). *Thermodynamics And Statistical Mechanics*. Raj Publications, Jaipur.
- Singhal S.S. (2013) *Heat, Thermodynamics & Statistical Physics*. Pragathi Pragason, Meerut, 1st edition.

Department	Physics	
Course	BSc Physics Effective year: 201	
Subject Code	: 16 UPS 204 Semester:	I & II
	: Core IV: Physics Lab I	1 & II
Hrs/Week:	3 Credit: 3	
Objectives	> To stimulate the student's desire to apply their	
	knowledge of theory to experiments.	
	\succ To test how far the students have grasped and	
	imbibed the basic principles taught.	
Cycle	Content	Hrs
	 Acceleration due to Gravity and Moment of Inertia - Compound pendulum Young's Modulus - Non uniform Bending - Pin and Microscope 	
Ι	 Rigidity Modulus - Static Torsion Surface Tension and Interfacial Tension - Drop weight method Coefficient of Viscosity - Stoke's method Verification of Laws of Transverse Vibrations and Frequency of a Fork - Sonometer 	24
II	 Young's Modulus - Non uniform Bending - Koenig's method Young's Modulus - Cantilever - Pin and Microscope Viscosity of a Liquid - Capillary Flow - Variable Pressure head Thermal Conductivity of a Bad Conductor - Lee's Disc Specific Heat Capacity of a Liquid - Newton's Law of cooling Frequency of a Tuning Fork and Density of Solid and Liquid - Melde's String 	
III	 Young's Modulus - Uniform Bending - Scale and Telescope Rigidity Modulus and Moment of Inertia - Torsional Pendulum Coefficient of Viscosity - Searle's Viscometer Specific Heat Capacity of a Liquid - Joule's Calorimeter Comparison of Viscosities of Liquids and Radii of Capillary tubes Refractive Index of a Prism - Spectrometer 	24

- Arora C.L. (2007). *Practical Physics*. S.Chand & Co, 19th Edition.
- Srinivasan M. L. Balasubramanian S. Ranganathan R. (2007). A Text book of Practical Physics. Sultan Chand. New Delhi.

- Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.
- Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers.
- Gupta S.L. Kumar V. (1999). *Practical Physics*. Pragati Prakashan, Meerut, 20th Edition.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 305	Somoston III
Title :	Core V: Electricity & Magnetism	Semester: III
Hrs/Week:	5	Credit: 5
Objectives	To understand the concepts of Electric field.	
	To understand the phenomenon of	
	Electromagnetic induction.	
	To study the oscillations in LCR circuits.	
	To realize the significance of Maxwell's	
	equations	

Unit	Content	Hrs
Ι	ELECTRIC FIELD AND POTENTIAL Concept of charge - Electric Field (E) - Potential difference (V) - Relation between E and V - Equipotential surfaces - Poisson's and Laplace equations - Potential and field due to an electric dipole - Potential and field due to a quadrupole - Potential and field due to uniformly charged disc - Potential due to two concentric spherical shells of charge - Potential energy due to charge distribution - Electrical images - A point charge near a conducting plane and conducting sphere.	13
II	CAPACITORS AND DIELECTRICS Capacitors - Parallel plate capacitor - Cylindrical capacitor - Spherical capacitor - Guard ring capacitor - Energy stored in a capacitor - Force of attraction between capacitor plates - Dielectric constant - Polar and nonpolar molecules - Polarisation of dielectric - Capacity of a parallel plate capacitor partially and completely filled with dielectric - Electric polarization vector P - Electric displacement vector D - Relation between D, E and P - Dielectric susceptibility and permitivity - Physical meaning of polarization - Mechanism of polarisation - Types of condensers - Dielectric strength	13
III	MAGNETOSTATICS AND MAGNETIC FIELD Magnetic effect of current - Lorentz force - Force on a current carrying wire - Magnetic flux - Gauss law in magnetostatics - Torque on a current carrying coil in uniform magnetic field - Potential energy of a current loop - Ballistic galvanometer - Deadbeat condition - Comparison of emfs and capacitances - Biot Savart law- field due to steady current in a long straight wire - Interaction between two long parallel wire carrying currents - Magnetic field along the axis of a circular coil - Helmholtz galvanometer - Field along the axis of a solenoid - Magnetic dipole - Ampere's law - Application to a current carrying conductor and solenoid	13
IV	ELECTROMAGNETIC INDUCTION Faraday's laws of Electromagnetic induction - Deduction of Faraday's laws from Lorentz's force - Self inductance - Calculation of self inductance for a solenoid - Energy stored in magnetic field - Mutual inductance - Energy stored in two interacting circuits - DC circuits : Simple RL circuit - Growth	13

	and decay of current - RC circuit - Charging and discharging of a condenser - Ideal LC circuit - Series LCR circuit - Discharge of a condenser through inductance and resistance	
V	MAXWELL'S EQUATIONS AND ELECTROMAGNETIC THEORY Basic equations - Types of current - Vacuum displacement current - Maxwell's equations (No derivations) - Maxwell's equations in free space - Electromagnetic waves in free space - Electromagnetic waves in isotropic non - conducting media - Refractive index - Impedence of dielectric media - Energy density of electromagnetic wave - Poynting theorem - Energy per unit volume - Retarded potentials	13

• Tewari K.K. (2002). *Electricity And Magnetism*. Sultan chand and co Ltd, New Delhi, (Units I - V).

- Tayal T.C. (2001). *Electricity And Magnetism*. Himalaya publication house, Mumbai.
- Murugesan R. (1998). *Electricity And Magnetism*. S.Chand & Company Ltd, New Delhi.

Department	Physics			
Course	BSc Physics	Effective free	om the	
		year: 2016		
	: 16 UPS 3N1	Semester: I	Π	
Title	: Non-Major Elective I: Principles of Physics – I			
Hrs/Week	1	Credit: 2		
Objectives	To spread the spirit of scientific interest			
	To develop the curiosity in Science			
	To embark on pursuing scientific enquiries			
	as a hobby			
Unit	Content		Hrs	
	ATMOSPHERE			
	Cosmic Rays - Ozone Layer - CFCs role in deplet			
Ι	Wind and Earth – Lightning (conducting medium		3	
1	Fragmentary Rainbows - Measurement of Rain - Rain colour of		5	
	clouds-Reason for continous stream-Cloud burst	s-Artificial		
	Rain - Rainbows (Size, doubleness)			
	GEOLOGY			
II	Age of Fossil - Measurement of depth of ocean - Lava from		2	
	Volcano - Monsoons – Seebergs - Radiation from Granites and		-	
	Marbles - Earth's Magnetic properties			
	HYDROLOGY			
III	Coolness of mud pot water - Colour of Waterfall - Measurement		2	
	of Quality of water in dams - Purity of Rain water	of Rain water - Purity of		
	mineral water in the Market			
	SPACE			
IV	Saturn rings - Measurement of temperature of planets			
1,	Asteroids - Rotation of Earth - Shooting stars and			
	Atmosphere of stellar bodies - Flat plane orbits of Plan	nets		
	HOME APPLIANCES			
	Microwave ovens - Pressure cooker - Richter scale -	0	~	
V	sound in Tension wires - Curved Fan wings - Sodi	-	3	
	lamp in streets - Tube Lights: Role of chokes of Start	ter, Reason		
	for no sharp shadows – Photocopier - Thermostat			

• The Editor, (2006).*The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. John Wiley Publications. 6th Edition.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 3N2	Semester: III
Title :	Non-Major Elective I: Renewable Energy Sources	
	Paper – I	
Hrs/Week;	1	Credit: 2
Objectives	To gain knowledge about conventional and	
	non-conventional energy sources and their	
	utilization.	

Unit	Content	Hrs
Ι	INTRODUCTION TO ENERGY SOURCES Conventional energy sources: Coal – Gas – Water – Agriculture and organic waste – Non conventional sources: Solar energy – Renewable energy resources	3
п	SOLAR RADIATION AND ITS MEASUREMENTS Solar Constant - Solar Radiation at the earth's surface: Beam and diffuse solar radiation – Air mass – Attenuation of beam radiation – Solar radiation geometry: Latitude of location – Declination – Hour angle – Angstrom compensation Pyrheliometer	3
III	SOLAR ENERGY COLLECTORS Physical principles of the conversion of solar radiation into heat - Flat plate liquid collector - Solar concentrators and receiver geometries (Basic types) - Advantages and disadvantages of concentrating collectors over flat – plate type collectors	3
IV	SOLAR ENERGY STORAGE Types of energy storage – Thermal storage - High temperature latent heat storage - Electrical storage - Storage in the form of fuel – Storage in the form of potential hydrogen energy	2
V	APPLICATIONS OF SOLAR ENERGY Introduction - Solar water heating- Space heating: Passive heating systems - Thermal storage wall – Roof storage - Solar cell principle – Solar cell modules - Applications of solar photovoltaic system	2

• Rai G. D. (2002). *Non Conventional Sources of Energy*. Khanna Publishers, NewDelhi, (Units I – V).

- Rai G. D. Solar Energy Utilization. Khanna Publishers, NewDelhi.
- Garg H.P. Prakash J. Solar Energy Fundamentals And Applications. Tata McGraw Hill Publications, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2016
Subject Code :	16 UPS 4N3	Semester: IV
Title :	Non-Major Elective II: Principles of Physics –II	
Hrs/Week:	1	Credit: 2
Objectives	To spread the spirit of scientific interest	
	To develop the curiosity in Science	
	> To embark on pursuing scientific enquiries as	
	a hobby	

Unit	Content	Hrs
Ι	Electric train – Leek proof battery –Hot air balloons – Remote control in TV –Superconductivity – Nuclear reactors	3
Π	Photochromic glasses – Exhaust silencer – Optical fibers – Radar and Sonar – Fluorescent Lamps – Holograms – Touch screens	2
III	Earthquake measurement – Splitting of white light – GPS – Origin of Gravity – Use of Infrared spectroscopy – Static electricity – Three pin electric plugs – Electric line tester	2
IV	Refrigerants and their use in refrigerators - Frost formation - Air Cooler & Conditioner - Black box in Planes - Speech synthesizers - Lie detector - Pencil eraser - Bullet proof glass - Dry cleaning - Aeroplane not affected by lightning - Mosquito mats - Unleaded Petrol and two wheelers - Oil with Petrol for two wheelers	3
V	TFM on soap - Cell phones - Cordless phones - Tubeless tyres - Radial & Ordinary tyres- Non linear editing - Tear gas - Smell of Dust bin - Biological Weapon -Super Plasticizers in concrete - Super Computers - Computers Simulation -Artificial teeth – Aqualung - Purity of Honey - Breath analyzers	3

• The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. 6th Edition, John Wiley Publications.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 4N4	Semester: IV
Title	: Non-Major Elective II : Renewable Energy Sources	
	Paper – II	
Hrs/Week	1	Credit: 2
Objectives	To gain knowledge about inexhaustible sources	
	of energies.	

Unit	Content	Hrs
Ι	WIND ENERGY Introduction- Nature of the wind – The power in the wind- Basic components of wind energy conversion system- Classification of WEC systems- Direct heat applications.	3
II	ENERGY FROM BIOMASS Introduction- Biomass conversion technologies- Wet processes – Dry processes - Photosynthesis – Classification of biogas plants.	3
III	GEOTHERMAL ENERGY Introduction- Estimates of geothermal power – Geothermal sources – Hydrothermal resources – Applications of geothermal energy.	2
IV	ENERGY FROM OCEANS Introduction- Ocean thermal electric conversion by open and closed cycles- Energy from tides- Basic principle of tidal power- Advantages and limitations of small scale hydroelectric.	3
V	HYDROGEN ENERGY Introduction – Properties of hydrogen – Electrolysis or the electrolytic production of hydrogen – Hydrogen storage – Utilization of hydrogen gas.	2

• Rai,G.D. (2002). *Nonconventional Sources of Energy*, Khanna Publishers. New Delhi, (Units I – V).

- Rai G.D. Solar Energy Utilization, Khanna Publishers. New Delhi.
- Sulchatme S.P. *Principles of Thermal Collection and Storage*, Tata McGraw Hill Publication, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code : Title	: 16 UPS 406 : Core VI: Optics & Spectroscopy	Semester: IV
Hrs/Week:	5	Credit: 5
Objectives	 To understand the mechanism of energy transfer in the form of waves and to impart knowledge in light To familiarize the concepts of molecular, atomic and nuclear spectra. 	

Unit	Content	Hrs
Ι	 WAVE MOTION Characteristics of wave motion - Transverse and longitudinal wave motion - Wavelength, Frequency, Amplitude, Time period, Vibration and Phase (Definitions only) - Relation between frequency and wavelength - Properties of longitudinal progressive waves - Equation of simple harmonic wave - Particle velocity and Wave velocity INTERFERENCE Theory of interference - Fresnel's biprism experiment - Determination of wavelength - Interference due to reflected light - Colours of thin films - Air wedge - Testing the planeness of surfaces - Newton's rings - Determination of wavelength and refractive index of a liquid 	13
II	 DIFFRACTION Fresnel's explanation of rectilinear propagation of light - Zone plate as converging lens - Fresnel's diffraction at a circular aperture - Fraunhofer diffraction at a single slit - Theory of the plane transmission grating - Determination of wavelength POLARISATION Polarisation of transverse waves - Plane of polarization - Brewster's law and Brewster's window - Polarization by refraction - Double refraction - Principal section and principal plane - Nicol prism - Nicol prism as an analyser - Theory of circularly and elliptically polarised light - Optical activity - Fresnel's explanation of rotation - Specific rotation - Laurent's half shade Polarimeter 	13
III	 LASER OPTICS Laser Characteristics - Einstein's coefficients -Population inversion - Pumping methods - Essential elements and Action of laser system - Ruby Laser- He-Ne Laser – Applications : Holography and Lasers in medicine FIBER OPTICS Construction and types of optical fiber - Critical angle - Acceptance angle, Acceptance cone and Numerical aperture - Propagation of light through optical fiber - Optical fiber configurations - Fiber optic communication system 	13

	MOLECULAR SPECTRA	
IV	Rotation of molecules - Rotational spectra of rigid diatomic molecule - Techniques and Instrumentation of Microwave Spectroscopy - Energy of a Vibrating diatomic molecule - Simple harmonic oscillator - Techniques and Instrumentation of Infrared Spectroscopy - Applications of Microwave & Infrared Spectroscopy (Basic ideas) - Raman effect and characteristics - Experimental study - Quantum theory of	13
	Raman effect	
V	ATOMIC & NUCLEAR SPECTRA Normal and Anomalous Zeeman effects - Experimental study of normal Zeeman effect - Lorentz Classical interpretation and Expression for the Zeeman shift - Quantum mechanical theory of Normal Zeeman effect - Paschen Back effect - Stark effect – NMR: Splitting of nuclear level in a magnetic field – Block diagram of NQR spectrometer – ESR: Interaction with magnetic field - Block diagram of ESR spectrometer	13

- Subramanyam N. Brijlal, Waves And Oscillations. S.Chand & Co, New Delhi, (Unit I).
- Subrahmanyam. N. Brijlal, Avathanulu M.N. (2008). *A Textbook Of Optics*. S.Chand and Co Ltd., New Delhi, (Units I III).
- Colin N .Banwell, Elaine M. Mc Cash, (2004). *Fundamentals Of Molecular Spectroscopy*. Tata McGraw-Hill, New Delhi, (Unit IV).
- Gupta S.L. Kumar V. Sharma R.C. (2001). *Elements Of Spectroscopy*. 16th edition, Pragati Prakashan, Meerut, (Unit V).

- Halliday, Resnick, (1994). *Physics Part I & II*. 4th Edition, Wiley Eastern Ltd, New Delhi.
- Jenkins, White, (1981). Fundamentals of Optics. 4th Edition, Mc Graw-Hill., New York.
- Manas Chanda, (1982). *Atomic Structure And Chemical Bond*. 2nd edition, Tata McGraw Hill, New Delhi.
- Gurdeep Chatwal, Sham Anand, (1987). *Spectroscopy*. 3rd edition, Himalaya Publishers, Mumbai.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 407	Semester: III &
Title :	Core VII: Physics Lab II	IV
Hrs/Week:	3	Credit: 3
Objectives	To understand the theory with hands-on	
	experience.	

Cycle	Content	Hrs
Ι	 1.Refractive Index of a Liquid - Spectrometer - Hollow Prism 2.Refractive Index of a Prism - Spectrometer - i-d curve 3.Radius of curvature and Refractive index of a lens - Newton's Rings 4.Calibration of Voltmeter (Low & High Range) - Potentiometer 5.Determination of M - Field along the axis of a Circular coil carrying current 6.Figure of merit - Current & Voltage Sensitivity - Ballistic Galvanometer 	24
II	 1.Refractive Index of a Prism - Spectrometer - i-i' curve 2.Wavelength of different colours of Mercury spectrum and Dispersive power of a Grating - Normal Incidence-Spectrometer 3.Thickness of a Wire - Air wedge 4.Temperature Coefficient & Resistance of a coil of wire - Potentiometer 5.Determination of H - Circular Coil carrying current -Vibration Magnetometer 6.Comparison of Resistances - Specific Resistance - Ballistic Galvanometer 	24
III	 1.Refractive Index - Spectrometer - Small Angle Prism 2.Cauchy's Constants and Dispersive Power of a Prism - Spectrometer 3.Calibration of Ammeter(High Range) and Reduction Factor of T.G - Potentiometer 4.E.M.F of a Thermocouple - Potentiometer 5.Absolute capacity of a Condenser - Ballistic Galvanometer 6.Mutual Inductance of a Coil & Comparison of Mutual Inductances – Ballistic Galvanometer 	24

• Govindarajan S.R. Sundarajan S. (1959). *Practical Physics*. Roc house & sons Pvt Ltd.

Reference Book

• Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers, Book II.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 508	Semester: V
Title :	Core VIII: Classical Dynamics	Semester. v
Hrs/Week:	5	Credit: 5
Objectives	> To understand the basic concepts in mechanics	
	of a particle and system of particles.	
	To familiarize the classical equation of motions	
	by Lagrangian, Hamiltonian and Hamilton-	
	Jacobi formulations	

Unit	Content	Hrs
	MECHANICS OF A PARTICLE Linear momentum - Angular momentum-Work- Power- Kinetic	
Ι	energy Conservative forces- Potential energy- Conservation theorem for linear momentum Conservation theorem for angular momentum - Conservation theorem for energy - Motion of a particle under time dependent applied force –Motion of a free electron in oscillating field - Motion of a particle under damping	13
	forces - Motion of a particle under central force – Application to Projectile and simple harmonic vibrations	
	MECHANICS OF SYSTEM OF PARTICLES	
	Conservation theorem for a system of particle; Conservation	
II	theorem for linear momentum, angular momentum and energy - Constrained motion - Types of constraints with examples - Forces of constraints - Degrees of freedom - Generalized	13
	coordinates - Generalized notation for Displacement, Velocity, Acceleration, Momentum, Force and Potential - Limitations of Newton's Law	
	LAGRANGIAN FORMULATION	
	Delta-Variation process - Hamilton's principle - Deduction of Lagrange's equations of motion from Hamilton's principle -	
III	Principle of virtual work - D'Alembert's principle - Deduction	
111	of Lagrange's equations by D'Alembert's principle for both	13
	conservative system and non-conservative system - Deduction of	15
	Hamilton's principle from D'Alembert's principle - Deduction of Newton's second law of motion from Hamilton's principle -	
	Applications of Lagrange's equation: Linear harmonic oscillator,	
	Simple pendulum, Compound pendulum.	
	HAMILTONIAN FORMULATION OF MECHANICS	
IV	View points of the new development - Phase space and the motion of systems - Hamiltonian - Hamilton's canonical	
	equations of motion - Cyclic coordinates - Physical significance	
	of H - Advantages of Hamiltonian approach - Deduction of	13
	canonical equations from variational principle - Applications of	
	Hamilton's equations of motion; Simple Pendulum, Compound pendulum, Linear harmonic oscillator.	

HAMILTON - JACOBI FORMULATION					
Canonical	or	contact	Transformations:	Point	Transfo

Canonical or contact Transformations: Point Transformation, Canonical Transformation, Generating Function (Four forms) -Advantage of Canonical Transformations - Simple Harmonic Oscillator - Hamilton Jacobi method - Harmonic Oscillator problem by Hamilton Jacobi method - Particle falling freely -Hamilton Jacobi equation for Hamilton's Characteristic function - Kepler's Problem.

13

Text Books

V

- Gupta S.N. (1970). *Classical Mechanics*. Meenakshi Prakashan Publications, Meerut, (Unit I).
- Gupta, Kumar, Sharma, (2006). *Classical Mechanics*. 21st Edition, Pragati prakasan, Meerut, (Units II V).

Reference Books

• Herbert Goldstein, (1985). *Classical Mechanics*. 2nd Edition, Narosa publishing House, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code	: 16 UPS 509	
Title	: Core IX: Relativity & Quantum Mechanics	Semester: V
Hrs/Week:	5	Credit: 5
Objectives	 To understand the concepts and the consequences of special and general theory of relativity. To understand the basic concepts of Quantum 	
	 theory and the wave properties of particles. To understand the different types of quantum numbers and to apply the wave equation to solve simple problems 	

Unit	Content	Hrs
Ι	RELATIVITY Galilean transformations and their limitations - Search for an absolute frame of reference: Michelson Morley experiment - Einstein's postulates and Lorentz transformations - Length contraction, Time dilation and Simultaneity – Variation of Mass with velocity	13
II	Mass-energy equivalence with experimental evidence - Relation between total energy, particle momentum and rest energy - Relativistic Doppler effect - Cerenkov radiation - World point and world line in Minkowski space - Inertial and gravitational mass - Principle of equivalence - Qualitative discussion of bending of light - Precession of perihelion of mercury and gravitational red shift	13
III	QUANTUM MECHANICS WAVE PROPERTIES OF PARTICLES The deBroglie hypothesis – The deBroglie wavelength – Expression for group velocity – Experimental study of matter waves : Davisson and Germer's experiment - G.P.Thomson's experiment - Heisenberg's Uncertainty principle and its illustrations: Gamma ray microscope & Diffraction of a beam of electrons by a slit - Postulates of quantum mechanics - Properties of wave function	13
IV	SCHRÖDINGERS EQUATION AND ITS APPLICATIONS Time dependent and Time independent forms - Particle in a box: Infinite square well potential - Potential step - The barrier penetration problem - Linear Harmonic oscillator - The rigid rotator	13

	QUANTUM THEORY OF HYDROGEN ATOM	
	Schrödinger's equation for the Hydrogen atom - Separation of	
	variables-Normalized wave functions - Expression for the	
V	energy of the electron in the ground state – Significance of	13
	Quantum numbers : Principal Quantum number , Orbital	
	Quantum number & Magnetic Quantum number - Electron	
	probability density - Radiative transitions - Selection rules	

- Murugesan R. (2003). *Modern Physics*. 11th Edition, S.Chand, NewDelhi, (Units I - IV).
- Arthur Beiser, (1997). *Concepts of Modern Physics*. 5th Edition, Tata McGraw Hill, NewDelhi, (Unit V).

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st Edition, Addison Wesley.
- Mathews, Venkatesan, (2002). *A Text Book of Quantum Mechanics*, Tata McGraw Hill Company Ltd, New Delhi.
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*, Himalaya Publishing Company, New Delhi.

Department	Physics		
Course	BSc Physics	Effective f year: 2016	
Subject Code : Title :	16 UPS 510 Major Elective I: Basic Electronics & Circuit Systems	Semester:	V
Hrs/Week:	5	Credit: 5	
Objectives	 To know the basics of AC&DC circuits. To understand the action of semiconductor devices and their applications. To know the principle and working of optoelectronic devices. 		
Unit	Content		Hrs
Ι	DC CIRCUITS AND ALTERNATING CURREN DC Circuits: Current, Voltage, Resistance, Ohr Joule's Law, Resistors and Batteries - Series and Circuits - Networks - Kirchoff Rules - Thevenin's T Norton's Theorem - Maximum power transfer th Proportional Voltage and Current formula - D'Arsony Ammeter, Voltmeter, Ohmmeter and Multimeter (Ba - Alternating currents: Frequency, Amplitude and RMS value and Power - Capacitance and Indu Transformer - Oscilloscope	n's Law, d Parallel Fheorem - heorem - val Meter, asic ideas) l Phase - uctance -	13
II	SEMICONDUCTOR DEVICES AND CIRCUITS Semiconductor and Energy bands - Doped Semico PN Junction diode and Zener diode - Characteristi wave, Full wave and Bridge rectifiers – Capacitance to pin regulated power supply - Voltage doublers - Cli Clampers - Transistor and action - Common Common emitter Configurations - Relations between Load line and Operating point - Stability - Voltage Self bias - JFET and its characteristics	onductor - ics - Half filter-Two ppers and base and α and β -	13
III	AMPLIFIERS & OSCILLATORS Principle of amplification - Classification of am Common emitter single stage amplifier and response - Multistage amplifiers (Basic ideas) - C feedback and Effect of negative feed back (qual Barkhausen criterion - Basic Oscillatory cir Classification of oscillators - Hartley, Colpitts and F Oscillators (Circuit operations) – Multivibrators : Monostable and Bistable	frequency oncept of litative) - cuit and Phase shift	13
IV	OPERATIONAL AMPLIFIER Typical stages of an Op Amp - Ideal Op A characteristics - Input offset voltage, Offset curr current and Slew rate (Definitions) - Inverting Op Noninverting Op Amp - Differential Op Amp - S Phase changers - Adder and Averager - S Differentiator and Integrator - Solving differential of	rent, Bias Amp - Scale and Subtractor,	13

v	OPTOELECTRONIC DEVICES Optical radiation - Flux and illumination - Structure, variation of resistance & speed response of a Photo detector - Photovoltaic cells - Photodiodes - Phototransistors - Light beam detector - Electronic slave flash control - Window detector - LED: Bar graph display, drivers and LED arrays - Optically coupled isolator (Basic ideas)	13
---	--	----

- James J.Brophy, (1990). *Basic Electronics for Scientists*. 5th Edition, McGraw Hill Publishing Company, New York, (Unit I).
- Sadasiva Biswal, (2001). *Basic Electronics (Vol.I)*. Atlantic Publishers and Distributors, (Units II &III).
- Swaminathan Mathu, (1985). *Electronics: Circuits and Systems*. 1stEdition, Howard W.Sams & Co., Inc, New York, (Units IV&V).

- Narayana Rao B.V., (1994). *Principles of Electronics (Vol. I & II)*. Wiley Eastern Limited & New Age International Limited, New York.
- Norman Lurch, *Fundamentals of Electronics*. 3rd Edition, John Wiley & Sons.
- Ramakant A.Gayakwad, (1997) *Op-Amps & Linear Integrated Circuits*. 3rd Edition, Prentice- Hall of India, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
		the year. 2010
Subject Code :		Semester: V
Title :	Major Elective II: Digital Circuit Systems	Semester. v
Hrs/Week:	5	Credit: 5
Objectives	 To study the number system, Logic circuits and its application. To understand the concept of Memories and IC technology. 	

Unit	Content	Hrs
	NUMBER SYSTEMS AND CODES	
Ι	Binary numbers - 1's and 2's complement - Addition - Subtraction - Multiplication - Division - Binary to Decimal conversion and vice versa - Octal numbers - Octal to Binary conversion and vice versa - Hexadecimal numbers - Hexadecimal to Binary conversion and vice versa - BCD - ASCII - Excess 3 code - Gray code LOGIC GATES	13
	OR, AND and NOT gates - NAND and NOR gates - Universal	
	building blocks - XOR and XNOR gates THEOREMS OF BOOLEAN ALGEBRA	
II	 Demorgan's theorems - Laws and theorems of Boolean algebra Simplification of Boolean expressions - Karnaugh map - Pairs, quads and octets - Sum of product method and simplifications - Don't care conditions - Product of sum method and simplifications ARITHMETIC PROCESSING CIRCUITS Half and full adders - Half and full subtractors - Parallel binary adder and subtractor 	13
ш	 DATA PROCESSING CIRCUITS Multiplexers - Demultiplexers - 1 - of - 16 decoder - BCD to decimal decoder - Seven segment decoders - Encoders FLIP FLOPS AND SHIFT REGISTERS RS Flip Flop - D Flip Flop - Edge triggering - JK and Master slave Flip Flop - Serial in serial out - Serial in parallel out - 	13
	Parallel in serial out - Parallel in parallel out shift register	
IV	COUNTERS Asynchronous Mod 8 up and down counters - Decoding gates - Synchronous Mod 8 up and down counters - Mod 3, Mod 5, and Mod 10 counters - Presettable counter - Digital clock D/A and A/D CONVERSIONS Variable resistor network - Binary ladder - D/A Converter - A/D converter	13

SEMICONDUCTOR MEMORIES Memory addressing - ROM's, PROM's and EPROM's - Expansion of ROM capacity - Static and Dynamic RAM's IC TECHNOLOGY Integrated circuits - Resistors, Diodes and BJT'S in IC's - Design rules for monolithic circuit - Fabrication of monolithic IC's	13
--	----

- Malvino A.P, Leach D.P. (2000). *Digital Principles and Applications*. 4th Edition, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, (Units I V).
- Swaminathan Madhu, (1985). *Electronic Circuits and Systems*. 1st Edition, Howard W. Sams & Co., Inc-A publishing subsidary of ITT, (Unit V).

Reference Books

• Jacob Millman, Halkias C. (1985). *Integrated Electronics*. 1st Edition, Mc Graw Hill Publishing Company.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code	: 16 UPS 612	Compostory VI
Title	: Core X: Mathematical Physics	Semester: VI
Hrs/Week:	5	Credit: 5
Objectives		
	To study and apply various mathematical concepts to solve physical problems.	

Unit	Content	Hrs
I	VECTORS Gradient of a scalar field – Line, Surface and Volume integrals – Divergence of a vector function – Curl of a vector function and its physical significance – Important vector identities – Gauss divergence theorem – Stokes theorem – Curvilinear co-ordinates – Cylinderical co-ordinates (r,θ) - Spherical polar co-ordinates (r,θ,Φ) – Grad, Divergence and curl in terms of curvilinear, cylindrical and spherical polar co- ordinates	13
II	MATRICES AND LINEAR SYSTEM OF EQUATIONS Eigen values, Eigen vectors; Characteristic equation of a matrix - Finding inverse of a matrix using Cayley Hamilton Theorem - Some important theorems of eigen values and eigen vectors – Matrices in Physics : Rotation matrix – Pauli spin matrix – Dirac matrix	13
III	LAPLACE TRANSFORM Laplace transform – Properties of Laplace transforms – Problems – Inverse Laplace transform : Properties of Inverse Laplace transform – Convolution theorem – Evaluation of Inverse Laplace transforms by convolution theorem - Problems	13
IV	GROUP THEORY Concept of a group - Abelian group - Generators of finite group - Cyclic group - Group multiplication table (Qualitative analysis) - Group of symmetry of a square - The Rearrangement theorem - Subgroups - Lagrange's theorem for a finite group - Cosets- Conjucate elements and classes - Product of classes - Complexes - Conjugate subgroups, Normal subgroups and factor groups - Isomorphism and Homomorphism - Permutation Groups	13
V	NUMERICAL METHODS Solution of algebraic and transcendental equations: The Bisection method -The iterative method - Method of false position - Newton- Raphson method - Solution of ODE: Taylor's series method - Euler's method - Runge Kutta II order method - Trapezoidal Rule - Simple problems	13

- Sathyaprakash, (2005). *Mathematical Physics*. Sultan Chand & Sons, New Delhi, (Units I IV).
- Sastry S.S. (2003). *Introductory Methods of Numerical Analysis*. 3rd Edition, Prentice Hall Of India, (Unit V).

- Gupta B.D. (1989). *Mathematical Physics*. 3rd Edition, Vikas Publication House, Noida.
- Louis A.Pipes, Lawrence R.Harvill, (1970). *Applied Mathematics For Engineers And Physicists* Mc Graw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). *Mathematical Physics*. Wiley Eastern Limited, New Delhi.
- Venkataram M.K. *Numerical Methods in Science and Engineering*. The National Publishing Company, New Delhi.
- Raman K.V. *Group Theory*. Tata McGraw Hill publishing company Ltd, New Delhi.

Department	Physics		
Course	BSc Physics	Effective f year: 2016	
Subject Code		Semester:	VI
Title	: Core XI: Atomic & Nuclear Physics		V I
Hrs/Week:	5	Credit: 5	
Objectives	 To understand the concept of electron ,and the structure of the atom To explore the origin of X-rays and its applications. To understand the properties of the nucleus and nuclear models. To know the concept of radioactive phenomena and nuclear reactions. To acquire knowledge about particle detectors, accelerators and elementary particles. 		
Unit	Content		Hrs
Ι	CONCEPT OF ELECTRON Charge of electron by Millikan's oil drop method - J.J Thomson's method to determine e/m - Positive rays - Isotopic constitution of elements - Photoelectric effect - Experimental investigations - Einstein's equation - Millikan's experiment. STRUCTURE OF THE ATOM Bohr's theory of Hydrogen atom - Excitation & Ionisation potentials - Experimental verification of discrete atomic energy levels - Correspondence principle - Sommerfeld model & Relativistic effects - Hyperfine structure - Vector atom model - Quantum numbers - Coupling schemes - Pauli exclusion principle - Electronic configuration of an atom .		13
П	X -RAYS Origin of X rays - Production & detection - Pr Diffraction of X rays (Laue spots) - Bragg's Law - I ray Spectrometer - Determination of crystal str Powder crystal method - Continuous and Characteri spectrum - Mosley's Law and significance - T Compton Scattering - Experimental verifica Applications of X rays (Basic ideas)	Bragg's X ucture by stic X ray Theory of	13
III	 NUCLEAR MODELS Properties of nucleus - Binding energy of the nupacking fraction - Nuclear stability - Nuclear model drop model and Semi empirical mass formula - Sh (Qualitative ideas). RADIOACTIVITY The law of radioactive decay and decay rate - Hal Mean life - Alpha decay: spontaneous decay - characteristics - Beta decay: Condition for spontaneo Characteristics of beta ray spectra - Gamma decay: G emission - Internal conversion. 	ls: Liquid hell model f life and - General us decay -	13

	NUCLEAR REACTIONS, DETECTORS AND		
	ACCELERATORS		
	Nuclear reaction energy - Reaction cross section - Nuclear fission - Energy released in fission of U^{235} - Chain		
IV	reaction - Fission reactor - Nuclear fusion - Fusion reaction -	13	
	Advantages and problems of fusion.		
	Ionization chamber: Simple Ionization chamber -		
	Proportional counter - GM counter - Scintillation counter -		
	Linear accelerator – Cyclotron.		
	ELEMENTARY PARTICLES AND COSMIC RAYS		
	Fundamental forces in nature - Classification of elementary		
	particles based on interactions - Conservation laws - Strange		
V	particle and Strangeness - Quarks - Quark model - Cosmic rays	13	
	- Primary and Secondary cosmic rays - Cosmic ray showers -		
	Positron - Pair production - Annihilation of matter - Mesons -		
	Origin of cosmic rays.		

- Rajam J.B. Prof.Louis De Broglie, (2000). *Atomic Physics*, Sultan Chand & Sons, New Delhi, (Units I & II).
- Raymond A. Serwey, Clement J. Moses & Curt Moyer, *Modern Physics*. 2nd edition, Saunders College Publishers, (Units III & IV).
- Atam P.Arya, *Elementary Modern Physics*. Addition Wesley publishing Company, (Unit IV)
- Murugeshan R, (2009) *Modern Physics*, S. Chand and Company Ltd, 14th edition, New Delhi, (Unit V).

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st edition, Addision Wesley.
- Sehgal Chopra, (2004) *Modern Physics*. 9th edition Sultan Chand & Sons, New Delhi.
- Pandya M.L. Yadev R.P.S, *Elements of Nuclear Physics*. 5th editions, KedarNath RamNath Publications.
- Tayal D. C. (1987). *Nuclear Physics* 4th edition, Himalaya Publishing House Publishers, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
Subject Code : Title :	16 UPS 614 Core XII: Condensed Matter Physics & Statistical Mechanics	Semester: VI
Hrs/Week:	5	Credit: 5
Objectives	 To understand the concepts of bonding in solids and various physical parameters to characterize crystals. To understand the electrical and magnetic properties of solids. To understand the occurrence of superconductivity and its applications. To understand the concepts of phase space, ensemble and their usage in various statistical distribution methods 	
Unit	Content	Hrs
Ι	BONDING IN SOLIDSBonding in solids - Ionic bonding - Covalent bond - Metallicbond - Intermolecular bonds - Dispersion bonds - Dipolebonds - Hydrogen bonds (Formation and properties)CRYSTAL PHYSICSLattice points and space lattice - Unit cells and latticeparameters - Crystal systems - Symmetry elements in crystals -The Bravais lattices - Metallic crystal structures - Relationbetween the density of crystal material and lattice constant in acubic lattice - Other cubic structures - Miller Indices -Reciprocal lattice (Construction only)	
Π	ELECTRICAL PROPERTIES OF SOLIDSClassical free electron theory of metals and its draw backs - Quantum theory of free electrons - Joule's law - Hall effect - Experimental determination of Hall coefficient - Band theory of solids - Electron in a periodic field of a crystal (the Kronig - Penney model) - Brillouin zones1MAGNETIC PROPERTIES OF SOLIDS Different types of magnetic materials - Langevin's Classical theory of diamagnetism - Langevin's and Weiss theory of ferromagnetism - Domain theory of ferromagnetism - Antiferromagnetism -Ferrimagnetism1	
III	SUPERCONDUCTIVITY Properties of superconductors - Effects of magnetic Persistent current - Critical current - The Meissner eff Isotope effect - Penetration depth - Type I and T superconductors - Electronic specific heat - Energy measurements - BCS theory - Josephson tunneling (ideas only) - High temperature superconductors - Applie of superconductivity (simple ideas only)	fect - ype II y gap (simple 13

IV	CLASSICAL STATISTICAL MECHANICS Phase space of a microscopic particle - Density of quantum states of energy of a particle - Volume occupied by a quantum state - Isolated system - Statistical equilibrium - Statistical postulates - Distribution function, entropy and probability - Maxwell - Boltzmann statistics and its application - Total internal energy - Specific heat at constant volume - Speed distribution - Most probable speed, average, root mean square	13
	speeds – Doppler broadening of spectral lines	
V	QUANTUM STATISTICAL MECHANICS Bose-Einstein energy distribution - Basic postulates - B-E energy distribution function - B-E energy distribution law for continuous variation of energy - Planck's law of radiation - Fermi - Dirac energy distribution - Basic postulates - Energy distribution function - Fermi energy - Energy distribution curve - Expression for the Fermi Energy for electrons in a metal - Fermi temperature and Fermi velocity - Thermionic emission - Richardson Dushman equation – Comparison of M-B, B-E and F-D statistics	13

- Pillai S.O. (2005). *Solid State Physics*. 6th Edition, New age international (P) Ltd, New Delhi, (Units I III).
- Serway R. Moses C. Moyer C.A. (1997). *Modern Physics*. 2nd edition, Saunders college publishers, (Unit III).
- Kamal Singh, Singh S. P. (1985). *Elements Of Statistical Mechanics*. 1st Edition, S.Chand & Company Ltd, NewDelhi, (Units IV &V).

- Agarwal B.K. Melvin Eicher, (1975). *Statistical Mechanics*. Wiley Eastern Ltd, Bangalore.
- Gupta S.L. Kumar V. (1987). *Solid State Physics*. 6th Edition, K.Nath & Co., Meerut.

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2016
Subject Code :	16 UPS 615	
Title :	Major Elective III: Microprocessor Mechanisms	Semester: VI
	& Programming in C	
Hrs/Week:	5	Credit: 5
Objectives	➢ To know the architecture & instruction set	
	of Intel 8085 Microprocessor.	
	➢ To familiarize different schemes of data	
	transfer & learn a few applications of 8085.	
	To become familiar with C programming	
	language.	
	To realize the efficiency & power of C	
	language.	

Unit	Content	Hrs
I	MICROPROCESSOR ARCHITECTURE AND PROGRAMMING Organization of a Microcomputer system – Architecture of the 8085 - Microprocessor instruction set and computer languages - Overview of the 8085 instruction set: Data transfer, Arithmetical, Logical, Branch, Stack, I/O & Machine control groups - Addressing modes - Programming the 8085: The programming process - The stack and subroutines - Simple programming examples	13
II	 INTERFACING MEMORY AND I/O DEVICES Address space partitioning - Data transfer schemes - Programmed data transfer: Synchronous transfer - Asynchronous transfer - Interrupt driven data transfer - Multiple interrupts - Enabling, disabling and masking of interrupts - Direct Memory Access data transfer APPLICATIONS OF MICROPROCESSOR Temperature monitoring system (Brief description) - Closed loop process control: The process of growing synthetic Quartz (Qualitative ideas only) 	13
III	INTRODUCTION TO C Basic Structure of C Programs - Character set - Key words and Identifiers - Constants - Variables - Data types – Declaration of variables – Assigning values to variables – Defining symbolic constants - Arithmetic operators - Relational operators - Logical operators - Assignment operators - Increment and decrement operators - conditional operators - Precedence of operators - Formatted input & output statements	13

	CONTROL STRUCTURES, ARRAYS & STRINGS	
IV	Simple if - ifelse - Nesting of ifelse - else if ladder - Switch - while - dowhile - for statements - Declaration and initialization of one & two dimensional arrays - Declaring and initializing string variables - String handling functions	13
V	FUNCTIONS, STRUCTURES AND POINTERS Definition of functions - Return values and their types - Category of functions: No arguments and no return values - Arguments but no return values - Arguments with return values - Recursion - Defining a structure - Declaring structure variables - Accessing structure members - Structure initialization - Declaring and initializing pointers - Pointers as function arguments - Pointers and structures	13

- Aditya P.Mathur, (1997). *Introduction To Microprocessor*. 3rd Edition, Tata McGrawHill, New Delhi, (Units I & II).
- E.Balagurusamy, (2004). *Programming In Ansi C*. Tata McGraw Hill Publishing Company, New Delhi, (Units III V).

- Ramesh S.Gaonkar, (1997). *Microprocessor Architecture, Programming And Applications With The 8085.* 3rd Edition, Penram International Publishing, India.
- Ravichandran.D, (1998). *Programming In C*. New Age International (P) Limited Publishers.
- Yashvant Kanetkar, (1995). *Let Us C*. 2nd Revised Edition, BPB Publications, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
Subject Code :	16 UPS 6S3	
Title :	Skill based Elective II: Environmental	Semester: VI
	Instrumentation	
Hrs/Week:	1	Credit: 2
Objectives	 To provide good foundation and inspire interest to gain knowledge in Thermal measurements. To understand the operational features, limitations and difficulties inherent in the instruments. 	

Unit	Content	Hrs
Ι	TEMPERATURE MEASUREMENTS Temperature scales - The ideal gas - Thermometer - Temperature measurement by mechanical effects - Temperature measurements by electrical effects : Electrical resistance thermometer - Thermistors - Thermoelectric effects - Quartz- crystal thermometer - Liquid crystal thermography	3
II	RADIATION MEASUREMENTS Radiation pyrometers – Blackbody conditions – Radiation reactive elements – Total radiation pyrometers – Infrared pyrometers – Optical pyrometers	3
Ш	THERMAL MEASUREMENTS Detection of thermal radiation – Measurement of emissivity – Reflectivity and Transmissivity measurements – Solar radiation measurements	2
IV	NUCLEAR RADIATION MEASUREMENTS Detection of Nuclear radiation – Geiger Muller Counter – Ionisation chambers – The Scintillation counter – Neutron detection.	2
V	AIR POLLUTION SAMPLING AND MEASUREMENTS Units of pollution measurements – General air sampling train- gas sampling techniques – Sulfur dioxide measurements – Combustion products measurements – Opacity measurements	3

- Sawhney A. K. Puneet Sawhney, (2004), A Course in Mechanical Measurements and Instrumentation, Dhanpat Rai & Co Pvt Ltd, (Units I & II).
- Jack P. Holman, (2000), *Experimental Methods for Engineers*, Tata McGrawHill, New Delhi, (Units III V).

Reference Book

• Rangan C. S. Sharma G. R. Mani V.S.V. (1983), *Instrumentation Devices and Systems*, Tata McGrawHill, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from
		the year: 2016
Subject Code :	16 UPS 6S4	Semester: VI
Title :	Skill based Elective II: Fundamentals of Astrophysics	
Hrs/Week:	1	Credit: 2
Objectives	\blacktriangleright To get acquainted with the latest aspects of	
	Astrophysics which have come out so far in the	
	transition period.	

Unit	Content	Hrs
Ι	OUR PLACE IN THE UNIVERSE A tour of the Universe – Scale and Contents: Planets, Stars, Galaxies, Light years and the Interstellar medium	2
Ш	OBSERVATIONAL ASTRONOMYThe Electromagnetic spectrum - Geometrical Optics: RayDiagrams, Focal length, Magnification - Diffraction:Resolving Power, Airy Disc, Diffraction Limit - Telescopes:Reflecting, Refracting, Multiwavelength.	3
III	STARS Properties of stars – Stellar structure and Evolution – Introduction to supernovae – Stellar remnants – White dwarfs – Neutron stars – Black holes	2
IV	QUASARS Constituents of Galaxies - General structure – Mass of the Galaxy – Cosmic Rays - External Galaxies: Classification and Spectra of Galaxy – Active Galaxies and Quasars.	3
V	COSMOLOGYRed shift and Expansion of the Universe – Hubble's Law –The Age of the Universe – The Big Bang – Introductory toCosmology: The Cosmological Principle, Homogeneity andIsotropy, Olber's Paradox – Introductory to CosmologicalModels: Critical Density, Geometry of Space, The fate of theUniverse – Dark energy and the Accelerating Universe.	3

• Baidyanath Basu, Tanuka Chattopadhyay, Sudhindra Nath, (2010) *An Introduction to Astrophysics*. PHI Learning Private Limited. New Delhi, (Units I – V).

Reference Book

• Abhyankar,K.D. (1999). *Astrophysics of The Solar System*,University Press Limited. Hyderabad.

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2016
Subject Code	: 16 UPS 616	Semester: V & VI
Title	: Core XIII: Electronics Lab	Semester. V & VI
Hrs/Week:	3	Credit: 3
Objectives	> To provide a basic grounding in the field of	
	Electronics and to serve as a hint for the	
	student to the more advance techniques.	

Cycle	Content	Hrs	Text
	1.Rectifier diode and Zener diode characteristics		Books
Ι	2.Rectifiers and Filters	12	• I
	3.CRO Familiarization		aul
	1.Verification of Thevenin's theorem		B.Zbar
II	2.Two pin regulated power supply	12	, , ,
	3. Transistor characteristics - Common Base mode		Malvin
	1.Verification of Norton's theorem		0,
III	2. Measurement of Band gap energy of Semiconductors		Miller,
	3. Transistor characteristics - Common Emitter mode	12	(1983).
			Electro nics: A
IV	1.Verification of Maximum power transfer theorem		Text-
IV	2.Voltage doubler	12	Lab
	3. Transistor voltage amplifier - Single stage		Manua
V	1. Astable Multivibrator		l.
v	2.JFET - characteristics	12	Mc.Gr
	3. Inverting and Non-inverting Operational amplifiers		aw
VI	1.Hartley Oscillator		Hill,
V I	2. Adder and Subtractor using Operational amplifier	12	New
	3.Colpitts Oscillator		Delhi.

• Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India,Ltd, New Delhi. Reference Books

- Paul B.Zbar, Joseph Sloop, (1997). *Electricity & Electronics Fundamentals : A Text-LabManual*. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition,Mc.Graw Hill, New Delhi.
- Bhargowa N.N. (1984). Basic Electronics And Linear Circuits. Tata Hill Publishing Co.Ltd.

Department	Physics		
Course	BSc Physics	Effective f year: 2016	
Subject Code		Semester:	V & VI
Title	: Core XIV: Digital & Microprocessor Lab		·
Hrs/Week:	3	Credit: 3	
Objectives	 To be acquainted with the basics and working of Electronic Digital circuits and Microprocessor. 		
Cycle	Content		Hrs
I	 Study of Various logic gates using ICs and basic logic gates using discrete components Study of NAND and NOR as Universal building blocks Microprocessor - Addition and Subtraction 		12
II	 Construction and Study of Half and Full adders Verification of Demorgan's theorems and problem solving through logic circuits Microprocessor - 1's and 2's complement 		12
III	 Construction and Study of Half and Full Subtractors Construction and Study of RS, D and JK flip-flops Microprocessor - Multiplication 		12
IV	 Construction and Study of Parallel binary adder Construction and Study of Multiplexers and Demultiplexers Microprocessor - Ascending and Descending orders 		12
V	 Construction and Study of Parallel binary Subtractor Construction and Study of Shift registers Microprocessor - Addition of an array of numbers and comparison of two numbers 		12
VI	 Construction and Study of MOD 3 and MOD 5 up court Construction and Study of BCD to decimal decoder Microprocessor - Division 	nters	12

- Albert Paul Malvino, Donald P. Leech, (1987). *Digital Principle And Applications*. 3rd Edition, Mc.Graw Hill.
- Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New York.

- Leech, (1986). *Experiments In Digital Principles*. 3rd Edition, Mc.Graw Hill, New York.
- Paul B.Zbar, Malvino, Sloop, (1997). *Electricity & Electronics Fundamentals: A Text-Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, Mc. Graw Hill.
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India Ltd, New Delhi.
- Bhargowa N.N. (1984). *Basic Electronics And Linear Circuits*. Tata Hill Publishing Co Ltd, New Delhi.

Department	Physics	
Course	BSc Physics	Effective from the year: 2016
Subject Code : Title :	16 UPS 618 Core XV: Computer Lab in C	Semester: VI
Hrs/Week:	2	Credit: 2
Objectives	To become familiar with C programming language.	

Content	Hrs	
1. Temperature Conversion		
2. Largest /Smallest of three numbers		
3. Quadratic equation		
4. Fibonacci number		
5. Armstrong number		
6. Electric Power Consumption		
7. Ascending/Descending order		
8. Matrix Addition/ Subtraction	36	
9. Matrix multiplication		
10. Sorting of names		
11. Multiplication Table		
12. Function with arguments and with return values		
13. Recursion function		
14. Pointer to Structure		
15. Pointer as function arguments		

• Balagurusamy E. (2004). *Programming In Ansi C*. Tata McGraw Hill Publishing Company, New Delhi.

- Ravichandran D. (1998). *Programming In C.* New Age International (P) Limited Publishers.
 Yashvant Kanetkar, (1995).*Let Us C.* 2nd Revised Edition, BPB Publications, New Delhi.

Department	Physics	
Course	B.Sc. Mathematics & Chemistry	Effective from the year : 2016
Subject Code :	16 UMS 3A3 / 16 UCY 3A3	
Title :	Physics For Mathematics & Chemistry- I	Semester: III
Hrs/Week:	5	Credit: 4
Objectives	 To understand the concepts & phenomena of Electric field.& Electromagnetic induction To understand the mechanism of energy transfer in the form of waves To provide the basic knowledge in semiconductor theory and digital electronics 	

Unit	Content	Hrs
Ι	ELECTRICITY AND MAGNETISM Electric field, Intensity & Potential - Potential due to a charged conducting sphere - Capacitance - Parallel plate capacitor - Energy stored in a charged capacitor - Kirchoff's law - Wheatstone's bridge - Potentiometer - Measurement of Resistance & EMF - Calibration of Ammeter & Voltmeter - Biot Savart law - Field along the axis of a circular coil - Determination of M & H - Electromagnetic induction - Self and Mutual induction - Induction coil, Transformer & Choke (Basic ideas)	13
II	WAVE OPTICS Young's double slit experiment - Coherent sources - Theory of interference fringes - Interference due to reflected light (Thin films) - Colours of thin films - Newton's rings - Determination of λ and μ - Theory of plane transmission grating - Determination of λ of Mercury light - Plane polarized light - Nicol prism as Analyzer and Polariser - Optical activity - Laurent's half shade Polarimeter	13
III	SEMICONDUCTOR PHYSICS Semiconductor - Intrinsic and Extrinsic semiconductors - Junction diode and Zener diode characteristics - Half & Full wave Rectifiers - Regulated power supply - Transistor and its action - Common base and common emitter configurations - Relations between α and β - Load line and Operating point - Stability	13

(CONTD.....2)

IV	NUMBER SYSTEMS, LOGIC GATES AND ARITHMETIC CIRCUITS Binary number - Addition, Subtraction, Multiplication & Division - Octal & Hexadecimal numbers - Interconversions - BCD numbers - ASCII codes - OR, AND & NOT gates using Discrete components and ICs - NOR & NAND gates - Universal building blocks - Demorgan's theorems - XOR & XNOR gates - Laws and theorems of Boolean algebra - Simplification of Boolean expression - Half & full adders - Half & full subtractors	13
V	FLIP FLOPSRS - D - JK - Master/SlaveCOUNTERSMod 8 Ripple counter (up and down) - Mod 10 counterMEMORIES (Basic ideas)Memory addressing - ROM, PROM and EPROM - RAM	13

- Murugeshan R, (2008). *Electricity and Magnetism*, S.Chand & Company Ltd, New Delhi, (Unit I).
- Brijlal and Subramaniam, (1999). A Text Books Of Optics. S.Chand & Company Ltd, New Delhi, (Unit II).
- Theraja B.L, (1998). *Basic Electronics Solid state*. S.Chand & Company Ltd, New Delhi, (Unit III).
- Malvino and Leech, (1986). *Digital Principles and Applications*. Tata Mc Graw Hill Publishing Company, New Delhi (Units IV & V).

- Brijlal and Subramaniam, (1987). *Electricity and Magnetism*, S.Chand & Company Ltd, New Delhi.
- Sadasiva Biswal, (2001). *Basic Electronics*. Atlantic Publishers and Distributors.
- Narayana Rao B.V. (1994). *Principles of Electronics*. Wiley Eatern Limited New Age International Limited.

Department	Physics	
Course	B.Sc. Mathematics & Chemistry	Effective from the year: 2016
	: 16 UMS 4A4 / 16 UCY 4A4 : Physics For Mathematics & Chemistry- II	Semester: IV
Hrs/Week:	5	Credit: 4
Objectives	 To understand the properties of atom and the nucleus To provide basic concepts and methodology of quantum mechanics. To study the basic concepts of special theory of relativity and the emergence of Einstein's Mass energy equivalence To acquire basic knowledge in the Field of Laser and Fiber optic technology 	

Unit	Content	Hrs
Ι	ATOMIC PHYSICS Discharge of electricity through rarified gases - Cathode rays - Properties - Determination of charge of electron by Millikan's oil drop method -Positive rays - Thomson parabola method - Rutherford atom model - Bohr atom model - Hydrogen spectral series - Critical potentials - Sommerfield atom model - Vector atom model (qualitative) - Pauli's exclusion principle	13
II	NUCLEAR PHYSICS Basic properties of nucleus - Binding energy, Mass defect and Nuclear force - Liquid drop model - Law of radioactivity - Half life and Mean life - Radioactive dating - α , β and γ decay process (Basic ideas) - Nuclear fission - Chain reaction & Atom bomb - Nuclear reactors - Nuclear fusion & Sources of stellar energy - Thermonuclear reactions & Hydrogen bomb	13
III	QUANTUM PHYSICS Black body radiation and Planck's hypothesis - Photoelectric phenomena and Experimental investigations - Einstein's equation and Millikan's experiment - De Broglie's concept of Matter waves and De Broglie wavelength – G.P.Thomson Experiment - Uncertainty Principle - Postulates of wave mechanics - Wave function and significance - Schrodinger equation (one dimensional) - Eigen values and Eigen functions	13

(CONTD.....2)

	SPECIAL THEORY OF RELATIVITY	
IV	Frames of reference - Newtonian Relativity - Michelson Morley experiment and explanation for negative results - Postulates of special theory of relativity - Lorentz transformation - Time dilation - Length contraction - Addition of velocities - Variation of mass with velocity - Equivalence of mass and energy	13
V	 LASER OPTICS Concept of energy levels - Einstein's coefficients (qualitative) -Population inversion - Pumping methods - Essential elements and Action of laser system - Characteristics - Holography and Lasers in medicine (Basic ideas) FIBER OPTICS Construction and types of optical fiber - Critical angle - Propagation of light through optical fiber - Optical fiber configurations - Acceptance angle, Acceptance cone and Numerical aperture - Fiber optic communication system 	13

- Murugesan R. (2001). Modern Physics. S.Chand & Company Ltd, New Delhi, (Units I III).
- Pedrotti L. & Pedrotti S. (2008). *Introduction To Optics*. Prentice Hall international Edition, New Delhi, (Unit IV).
- Wayne Tomasi and Vincent F.Alisouskas. (1988). *Telecommunications*. Prentice Hall International, New Delhi, (Unit -V).

- Arthur Beiser, (2003). Concepts of Modern Physics. Addison Wesley Pvt Ltd.
- Raymond.A.Serway, (2007). *Physics For Scientists And Engineers*. Saunders College Publishing (Harcourt Brace College Publishers).

Department	Physics	
Course	BSc Physics	Effective from the
		year: 2016
Subject Code :	16 UMS 4A5 / 16 UCY 4A5	Semester: III & IV
Title :	Physics Lab For Mathematics & Chemistry	Semester. III & IV
Hrs/Week:	3	Credit: 4
Objectives	\succ To make the students understand the	
	theoretical background by performing	
	experiments.	

Cycle	Content	Hrs
	1. Refractive index of a Prism - Spectrometer	
	2. Refractive index of a Lens - Newton's Rings	
	3. Specific resistance of a Wire - Potentiometer	
	4. Horizontal Component of Earth's Magnetic Field (H) - Field	
	along the axis of a Circular coil carrying current	
Ι	5. Characteristics of PN Junction Diode	24
	6. Basic Logic Gates - Discrete Components & ICs	
	7. Demorgan's Theorems and Problem solving in Boolean	
	Algebra through Logic Circuits	
	8. Half & Full Adder	
	9. NAND as Universal building block	
	1. Refractive index of a Prism – i d Curve - Spectrometer	
	2. Wavelength of Mercury source – Grating - Normal incidence –	
	Spectrometer	
	3. Calibration of Low range Voltmeter and Ammeter -	
	Potentiometer	
II	4. Magnetic Moment (M) - Field along the axis of a Circular coil carrying current	24
	5. Characteristics of Zener Diode	
	6. Rectifiers & Filters	
	7. Two pin Regulated Power supply	
	8. Half & Full Subtractors	
	9. NOR as Universal building block.	

• Govindarajan S.R. Sundarajan S. (1959). *Practical Physics*. Roc house & sons Pvt Ltd.

Reference Book

• Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.