Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code	17UPS101	Title	Batch:	2017
Course Code:		Core I: Properties of Matter	Semester:	Ι
Hrs/Week:	3		Credits:	3

• To understand the basic concepts of gravitation and to get exposure to the properties of liquids and solids

Course outcomes

K1	CO1	To recollect the physical properties of different states of matter
K2	CO2	To understand the applications of the elastic properties of solids
K3	CO3	To implement the knowledge of properties for the thermal expansion of solids
K4	CO4	To analyze the diffusion of gases in various media

Syllabus

Unit	Content	Hrs
Ι	GRAVITATION Kepler's laws - Newton's law of gravitation - Gravitational constant : Boy's Method - Gravitational field and Gravitational potential - Potential energy - Escape velocity - Equipotential surface - Earthquakes - Seismic waves - <i>Applications of Seismology</i>	8
Π	ELASTICITY Stress and Strain - Hooke's law - Types of Elasticity - Relation connecting the Elastic constants - Poisson' s ratio - Torsional pendulum - Determination of Moment of Inertia : The Inertia Table - Bending of beams - Bending moment – Depression of a beam Supported at the ends	8
III	VISCOSITY Viscosity - Coefficient of viscosity - Poiseuille's equation for the flow of liquid through a horizontal capillary tube – Experimental determination of coefficient of viscosity for a liquid - Motion in a viscous medium: Stoke's law - Determination of coefficient of viscosity of highly viscous liquid - Stoke's method	8
IV	SURFACE TENSION Surface tension - Surface energy - <i>Excess pressure inside a liquid drop and soap</i> <i>bubble</i> - Determination of surface tension of a bubble - Capillary rise - Energy required to raise a liquid in a capillary tube - Experimental study of variation of surface tension with temperature	8
V	DIFFUSION AND OSMOSIS Diffusion - Fick's law - Graham's law of diffusion of gases - Osmosis and osmotic pressure - Laws of osmotic pressure - Experimental determination of osmotic pressure	7
	Total contact hours	39

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Units I - V).

Reference Books

- Brijlal & Subramaniam, (2000). Properties Of Matter. Vikas Publications house, New Delhi.
- Murugesan R. (1995). Properties Of Matter. S.Chand & Company Ltd, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	Н	М
CO2	Н	Н	S	Н	М
CO3	М	М	S	S	М
CO4	М	S	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.T.Ponraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	17UPS102	Title	Batch:	2017
		Core II: Mechanics & Sound	Semester:	Ι
Hrs/Week:	5		Credits:	3

• To acquire a complete knowledge about mechanics and sound

		Course outcomes
K1	CO1	To remember the principles of rigid body, statics, dynamics and sound
K2	CO2	To understand the mechanics behind rigid body, projectiles and dynamics
K3	CO3	To analyze the characteristics of sound and requisites of good acoustics
K4	CO4	To solve problems based on dynamics

Syllabus

Unit	Content	Hrs
Ι	Projectiles Projectiles – Range – Expression for the range of projectile on the inclined plane – path of a projectile – Impulse – Direct and oblique impact – Expression for velocity after direct impact.	7
Π	Statics and DynamicsForce of friction –Limiting friction – Laws of friction –Angle of friction –Definition and determination of centre of pressure – Expression for centre ofpressure of a rectangular lamina with one side on the surface of the liquid –Laws of floatation–Definition for metacentre and metacentric height.HydrodynamicsSteady or streamline flow and turbulent flow (qualitative analysis) – Lines andtubes flow – Equation of continuity of flow–Bernoulli's theorem.	8
III	Rigid body dynamicsRigid body-rotational and vibrational motion –Torque–moment of inertia –radius of gyration –kinetic energy of rotation– M.I. of a fly wheel– experimentaldetermination–precession (qualitative analysis).	8
IV	Sound Classification of Sound - Musical sound and Noise – Speech – Human voice – Human Ear – Characteristic of Musical Sound – Intensity of Sound – Measurement of Intensity of Sound – Decibel – Phon(Definitions only) – Velocity of Transverse waves along a stretched string – Laws of transverse vibration of strings – Melde's experiment – Resonance.	8
V	Acoustics and UltrasonicsIntroduction – Reverberation – Sabine's Reverberation formula (qualitative analysis) – Determination of Absorption coefficient – Factors affecting Acoustics of buildings - Requisites for good acoustics in auditorium – Ultrasonics – Production of Ultrasonics: Piezoelectric oscillator – Detection of Ultrasonic waves – Acoustic grating - Applications of Ultrasonics: Depth of the sea and non-destructive testing	8
	Total contact hours	39

• Italic font denotes self study

Additional activities

Text Books

- Mathur D.S. (1996). Mechanics. S.Chand & Company Ltd, New Delhi, (Units I & III).
- Venkataraman M.K. (2014). *Dynamics*. Agasthiar Publications, Trichy, (Unit II).
- Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Unit III).
- Brijlal. N. Subramaniam. (2002). *Text Book of Sound*. Vikas Publications house Pvt Ltd, NewDelhi, (Unit IV & V).

Reference Books

- Chakraborthy. B. K. (2001.)Mechanics and General properties of matter, (2001). Books & Allied (P) Ltd.
- Rajendran. V, Marikani. A.(1997) Applied Physics for Engineers. Tata Mc-Graw Hill, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Н
CO2	S	Н	Н	S	S
CO3	Н	S	S	Н	Н
CO4	S	Н	S	S	S

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: S.Shanmuga Priya	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Science	
Course Code:	17 UPS203	Title	Batch:	2017
		Core III: Heat & Thermodynamics	Semester:	II
Hrs/Week:	5		Credits:	5

• To understand of the fundamental laws and principles of thermodynamics and heat transfer

Course outcomes

		To recognize the difference between heat and temperature
K2	CO2	To understand the fundamental laws and principles of heat transfer and theory of gases
K3	CO3	To acquire working knowledge on low temperature physics and its domestic applications
K4	CO4	To analyse and evaluate various thermodynamic cycles used for energy productions

Syllabus

Unit	Content	Hrs
I	THERMOMETRY AND SPECIFIC HEATS Concept of heat and temperature - Thermoelectric thermometer - Absolute zero and Ice point - Low temperature measurement - High temperature measurement - Specific heat of a gas $-C_p \& C_v$ - Determination of C_v by Joule's differential steam calorimeter - Determination of C_p by continuous flow electrical method - Dulong and Petit's law - Variation of Specific heat and Atomic heat with temperature.	13
п	KINETIC THEORY OF GASES Kinetic theory of gases - Postulates - Derivation of gas equation - Maxwell's law of distribution of velocities - Experimental verification - Degrees of freedom and Maxwell's law of equipartition of energy – Vander waal's equation of state - Critical constants - Corresponding states of matter	13
III	TRANSMISSION AND RADIATION OF HEAT Thermal conductivity - Forbe's method - Radial and cylindrical flow of heat - Thermal conductivity of rubber - Stefan's law and experimental verification - Determination of Stefan's constant - Blackbody - Properties of thermal radiation - Distribution of energy in the spectrum of a black body.	13
IV	LOW TEMPERATURE PHYSICS Porous Plug experiment and theory - Cascade process - Liquefaction of Oxygen - Air (Linde's process) - Hydrogen (Cascade process) - Liquefaction of Helium - K.Onnes method - Helium I and Helium II - Production of low temperature - Conversion of magnetic temperature to Kelvin temperature - <i>Electrolux refrigerator</i>	13
V	THERMODYNAMICS Zeroth law of thermodynamics - Thermal equilibrium - Comparison of heat and work - First law of thermodynamics - Isothermal and Adiabatic process - Work done during Isothermal and Adiabatic process - Reversible and Irreversible process - Carnot's reversible engine - Carnot's theorem - Second law of thermodynamics - Entropy : Reversible and Irreversible process - Third law of thermodynamics - Temperature - Entropy diagram	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	М	Н
CO2	Н	М	S	Н	М

Mapping

CO3	М	Н	Н	S	S
CO4	S	М	S	М	Н

S-Strong; H-High; M-Medium; L-Low

Text Book

• Brijlal and Subrahmanyam. (2000). *Thermodynamics and Statistical Mechanics*. Sultan & Chand & Co Ltd, NewDelhi, (Units I – V).

Reference Books

- Kakani S.L. (2001). Thermodynamics and Statistical Mechanics. Raj Publications, Jaipur.
- Singhal S.S. (2013) *Heat, Thermodynamics & Statistical Physics*. Pragathi Pragason, Meerut, 1st edition.

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr. T.Ponraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title :	Bachelor of Scient	nce
Course Code	17UPS204	Title	Batch :	2017
Course Code:	170P5204	Core IV: Physics Lab I	Semester	I & II
Hrs/Week:	3		Credits:	3

• To develop the skill to gain knowledge in Physics Lab I

Course Outcomes

K3	CO1	To recollect the basic principles taught
K4	CO2	To understand and apply the knowledge of theory to experiments
K5	CO3	To validate the experiment with theory

List of Experiments (Any fifteen):

- 1. Young's Modulus Non uniform Bending Pin and Microscope
- 2. Young's Modulus Non uniform Bending Koenig's method
- 3. Young's Modulus Cantilever Pin and Microscope
- 4. Young's Modulus Uniform Bending Scale and Telescope
- 5. Rigidity Modulus Static Torsion
- 6. Rigidity Modulus and Moment of Inertia Torsional Pendulum
- 7. Acceleration due to Gravity and Moment of Inertia Compound pendulum
- 8. Surface Tension and Interfacial Tension Drop weight method
- 9. Coefficient of Viscosity Stoke's method
- 10. Coefficient of Viscosity Searle's Viscometer
- 11. Verification of Laws of Transverse Vibrations and Frequency of a Fork Sonometer
- 12. Viscosity of a Liquid Capillary Flow Variable Pressure head
- 13. Comparison of Viscosities of Liquids and Radii of Capillary tubes
- 14. Frequency of a Tuning Fork and Density of Solid and Liquid Melde's String
- 15. Thermal Conductivity of a Bad Conductor Lee's Disc
- 16. Specific Heat Capacity of a Liquid Newton's Law of cooling
- 17. Specific Heat Capacity of a Liquid Joule's Calorimeter
- 18. Refractive Index of a Prism Spectrometer

Text Books

- Arora C.L. (2007). Practical Physics. S.Chand & Co, 19th Edition.
- Srinivasan M. L. Balasubramanian S. Ranganathan R. (2007). *A Text book of Practical Physics*. Sultan Chand. New Delhi.

Reference Books

- Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.
- Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers.
- Gupta S.L. Kumar V. (1999). Practical Physics. Pragati Prakashan, Meerut, 20th Edition.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Н
CO2	S	Н	S	Н	Н
CO3	Н	Н	S	Н	S

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of S	cience
		Title	Batch:	2017
Course Code:	17UPS3N1	Non-Major Elective I: Principles of Physics – I	Semester:	III
Hrs/Week:	1		Credits:	2

• To create awareness and to develop basic skills about environment, energy resources and its application

Course outcomes

K1	CO1	To acquire basic knowledge on renewable energy sources
K2	CO2	To get the idea about astrophysics and and the energy resources
K3	CO3	To implement the environmental impacts on the concepts of physics
K4	CO4	To effectively use energy sources based on the required applications

Syllabus

Unit	Content	Hrs
Ι	ATMOSPHERE Cosmic Rays - Ozone Layer - CFCs role in depletion - Solar Wind and Earth – Lightning (conducting medium to Earth) - Fragmentary Rainbows - Measurement of Rain - Rain colour of clouds-Reason for continous stream-Cloud bursts-Artificial Rain - <i>Rainbows (Size, doubleness)</i>	3
II	INTRODUCTION TO ENERGY SOURCES Conventional energy sources: Coal – Gas – Water – Agriculture and organic waste – Non conventional sources: Solar energy – Renewable energy resources	2
III	APPLICATIONS OF SOLAR ENERGY Introduction - Solar water heating- Space heating: Passive heating systems - Thermal storage wall – Roof storage - Solar cell principle – Solar cell modules - Applications of solar photovoltaic system	3
IV	SPACE Saturn rings - Measurement of temperature of planets and stars -Asteroids - Rotation of Earth - Shooting stars and comet s-Atmosphere of stellar bodies - Flat plane orbits of Planets	2
V	HOME APPLIANCES Microwave ovens - Pressure cooker - Richter scale - Humming sound in Tension wires - Curved Fan wings - Sodium vapour lamp in streets - Tube Lights: Role of chokes of Starter, Reason for no sharp shadows – Photocopier - <i>Thermostat</i>	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I,IV,V)
- Rai G. D. (2002). Non Conventional Sources of Energy. Khanna Publishers, NewDelhi, (Units II III)

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. John Wiley Publications. 6th Edition.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	S	S
CO2	S	Н	S	Н	М
CO3	М	S	S	М	S
CO4	S	S	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.S.Yogeshwari	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS3N2	Non-Major Elective I: Renewable Energy Sources	Semester:	III
Hrs/Week:	1		Credits:	2

• To develop the basic skills about various energy resources and its applications

Course outcomes

K1	CO1	To understand the Fundamental concept of various energy resources
K2	CO2	To implement the physical principles on the conventional and non-conventional sources to a
		device and its measurements.
K3	CO3	To harvest energy from various available sources

Unit	Content	Hrs
Ι	GEOLOGY Age of Fossil - Measurement of depth of ocean - Lava from Volcano - Monsoons – Seebergs - Radiation from Granites and Marbles - Earth's Magnetic properties	3
II	HYDROLOGY Coolness of mud pot water - Colour of Waterfall - Measurement of Quality of water in dams - Purity of Rain water - <i>Purity of mineral water in the Market</i>	3
Ш	SOLAR RADIATION AND ITS MEASUREMENTS Solar Constant - Solar Radiation at the earth's surface: Beam and diffuse solar radiation – Air mass – Attenuation of beam radiation – Solar radiation geometry: Latitude of location – Declination – Hour angle – Angstrom compensation Pyrheliometer	3
IV	SOLAR ENERGY COLLECTORS Physical principles of the conversion of solar radiation into heat - Flat plate liquid collector - Solar concentrators and receiver geometries (Basic types) - Advantages and disadvantages of concentrating collectors over flat – <i>plate type collectors</i>	2
V	SOLAR ENERGY STORAGE Types of energy storage – Thermal storage - High temperature latent heat storage - Electrical storage - Storage in the form of fuel – Storage in the form of potential hydrogen energy	2
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

Rai G. D. (2002). Non Conventional Sources of Energy. Khanna Publishers, NewDelhi, (Units I – V).

Reference Books

- Rai G. D. Solar Energy Utilization. Khanna Publishers, NewDelhi.
- Garg H.P. Prakash J. Solar Energy Fundamentals And Applications. Tata McGraw Hill Publications, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	S	S
CO2	S	Н	S	Н	М
CO3	S	S	S	М	S
CO4	S	S	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.S.Yogeshwari	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of S	Science
Course Code:	17UPS305	Title	Batch:	2017
		Core V: Electricity & Magnetism	Semester:	III
Hrs/Week:	5		Credits:	5

• To demonstrate the knowledge of electricity and magnetism in formulating and solving practical problems.

Course outcomes

K1	CO1	To acquire the knowledge on fundamental concepts of electric and magnetic field
K2	CO2	To understand the concept of electric field, potential and electromagnetic induction
K3	CO3	To implement the ideas for making the electrical devices such as capacitor, inductor, resistance, etc.,
K4	CO4	To evaluate the basic and advanced problems in the field of electromagnetic theory

Syllabus

Unit	Content	Hrs
I	ELECTRIC FIELD AND POTENTIAL Concept of charge - Electric Field (E) - Potential difference (V) - Relation between E and V - Equipotential surfaces - Poisson's and Laplace equations - Potential and field due to an electric dipole - Potential and field due to a quadrupole - Potential and field due to uniformly charged disc - Potential due to two concentric spherical shells of charge - Potential energy due to charge distribution.	13
Π	CAPACITORS AND DIELECTRICS Capacitors - Parallel plate capacitor - Cylindrical capacitor - Spherical capacitor - Guard ring capacitor - Energy stored in a capacitor - Force of attraction between capacitor plates - Dielectric constant - Polar and nonpolar molecules - Polarisation of dielectric - Capacity of a parallel plate capacitor partially and completely filled with dielectric - Electric polarization vector P - Electric displacement vector D - Relation between D, E and P - Dielectric susceptibility and permitivity - Physical meaning of polarization - <i>Dielectric strength</i>	13
Ш	MAGNETOSTATICS AND MAGNETIC FIELD Magnetic effect of current - Lorentz force - Force on a current carrying wire - Magnetic flux - Gauss law in magnetostatics - Torque on a current carrying coil in uniform magnetic field - Potential energy of a current loop - Ballistic galvanometer - Deadbeat condition - Comparison of emfs and capacitances - Biot Savart law- field due to steady current in a long straight wire - Interaction between two long parallel wire carrying currents - Magnetic field along the axis of a circular coil - Field along the axis of a solenoid - Magnetic dipole - Ampere's law - Application to a current carrying conductor and solenoid	13
IV	ELECTROMAGNETIC INDUCTION Faraday's laws of Electromagnetic induction - Deduction of Faraday's laws from Lorentz's force - Self inductance - Calculation of self inductance for a solenoid - Energy stored in magnetic field - Mutual inductance - Energy stored in two interacting circuits - DC circuits : Simple RL circuit - Growth and decay of current - RC circuit - Charging and discharging of a condenser - Ideal LC circuit - Series LCR circuit - <i>Discharge of a condenser through inductance and</i> <i>resistance</i>	13

V	MAXWELL'S EQUATIONS AND ELECTROMAGNETIC THEORY Basic equations - Types of current - Vacuum displacement current - Maxwell's equations (No derivations) - Maxwell's equations in free space - Electromagnetic waves in free space - Electromagnetic waves in isotropic non - conducting media - Refractive index - Impedence of dielectric media - Energy density of electromagnetic wave - Poynting theorem (statement only) - Energy per unit volume.	
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

• Tewari K.K. (2002). *Electricity And Magnetism*. Sultan chand and Co Ltd, New Delhi, (Units I - V).

Reference Books

- Tayal T.C. (2001). *Electricity And Magnetism*. Himalaya publication house, Mumbai.
- Murugesan R. (1998). *Electricity And Magnetism*. S.Chand & Company Ltd, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	М	Н
CO2	Н	М	S	Н	М
CO3	М	Н	Н	S	S
CO4	S	М	S	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.T.Ponraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of S	cience
		Title	Batch:	2017
Course Code:	17UPS4N3	Non-Major Elective II: Principles of Physics –II	Semester:	IV
Hrs/Week:	1		Credits:	2

• To develop the scientific interests on the portable electronic devices for day to life

Course outcomes

K1	CO1	To recollect the basic knowledge about portable devices
K2	CO2	To understand the central concepts of electric and optical devices
K3	CO3	To apply the basic physical phenomena on the operating features of scientific devices
K4	CO4	To figure out the applications of the physical quantities

Syllabus

Unit	Content	Hrs
Ι	Electric train – Leak proof battery –Hot air balloons – Remote control in TV –Superconductivity – <i>Nuclear reactors</i>	3
II	Photochromic glasses – Exhaust silencer – Optical fibers – Radar and Sonar – Fluorescent Lamps – Holograms – Touch screens	2
III	Earthquake measurement – Splitting of white light – GPS – Origin of Gravity – Use of Infrared spectroscopy – Static electricity – Three pin electric plugs – Electric line tester	2
IV	Refrigerants and their use in refrigerators - Frost formation - Air Cooler & Conditioner - Black box in Planes - Speech synthesizers - Lie detector - Pencil eraser - Bullet proof glass - Dry cleaning - Aeroplane not affected by lightning - Mosquito mats - Unleaded Petrol and two wheelers - <i>Oil with Petrol for two wheelers</i>	3
V	TFM on soap - Cell phones - Cordless phones - Tubeless tyres - Radial & Ordinary tyres- Non linear editing - Tear gas - Smell of Dust bin - Biological Weapon -Super Plasticizers in concrete - Super Computers - Computers Simulation - Artificial teeth – Aqualung - Purity of Honey - Breath analyzers	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

Reference Books

• Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). The Feynman Lecture on

Physics. Narosa Publishing House, New Delhi.

• David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. 6th Edition, John Wiley Publications.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	S	S
CO2	М	S	S	Н	S
CO3	S	Н	Н	S	S
CO4	S	S	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Ms.S.Yogeshwari	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	17UPS406	Title	Batch:	2017
		Core VI: Optics & Spectroscopy	Semester:	IV
Hrs/Week:	5		Credits:	5

• To understand the mechanism of energy transfer and to impart knowledge in electromagnetic spectrum

Course outcomes

K1	CO1	To gain knowledge about fundamental properties light, electromagnetic spectrum and splitting
		of spectral lines.
K2	CO2	To apply the energy transfer for absorption and emission spectra
K3	CO3	To determine structure of the molecules
K4	CO4	To evaluate bond angle and bond length etc.

Syllabus

Unit	Content	Hrs
I	INTERFERENCE Characteristics of wave motion - Transverse and longitudinal wave motion - Theory of interference - Fresnel's biprism experiment - Determination of wavelength - Interference due to reflected light - Colours of thin films - Air wedge - Testing the planeness of surfaces - Newton's rings - Determination of wavelength and refractive index of a liquid	13
п	DIFFRACTION Fresnel's explanation of rectilinear propagation of light - Zone plate - Zone plate as converging lens - Fresnel's diffraction at a circular aperture - Fraunhofer diffraction at a single slit - Theory of the plane transmission grating - Determination of wavelength	13
ш	POLARISATION Polarisation of transverse waves - Plane of polarization - Brewster's law and Brewster's window - Polarization by refraction - Double refraction - Principal section and principal plane - Nicol prism - Nicol prism as an analyser - Theory of circularly and elliptically polarised light - Optical activity - Fresnel's explanation of rotation - Specific rotation - Laurent's half shade Polarimeter	13
IV	MOLECULAR SPECTRA Rotation of molecules - Rotational spectra of rigid diatomic molecule - Techniques and Instrumentation of Microwave Spectroscopy - Energy of a Vibrating diatomic molecule - Simple harmonic oscillator - Techniques and Instrumentation of Infrared Spectroscopy - Applications of Microwave & Infrared Spectroscopy (Basic ideas) - Raman effect and characteristics - Experimental study - Quantum theory of Raman effect	13
V	ATOMIC & NUCLEAR SPECTRA Normal and Anomalous Zeeman effects - Experimental study of normal Zeeman effect - Lorentz Classical interpretation and Expression for the Zeeman shift - Quantum mechanical theory of Normal Zeeman effect - Paschen Back effect - Stark effect - NMR: Splitting of nuclear level in a magnetic field - Block diagram of NQR spectrometer - ESR: Interaction with magnetic field - Block diagram of ESR spectrometer	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Text Books

- Subramanyam N. Brijlal, Waves And Oscillations. S.Chand & Co, New Delhi, (Unit I).
- Subrahmanyam. N. Brijlal, Avathanulu M.N. (2008). A Textbook Of Optics. S.Chand and Co Ltd., New Delhi, (Units I III).
- Colin N .Banwell, Elaine M. Mc Cash, (2004). *Fundamentals Of Molecular Spectroscopy*. Tata McGraw-Hill, New Delhi, (Unit IV).
- Gupta S.L. Kumar V. Sharma R.C. (2001). *Elements Of Spectroscopy*. 16th edition, Pragati Prakashan, Meerut, (Unit V).

Reference Books

- Halliday, Resnick, (1994). *Physics Part I & II*. 4th Edition, Wiley Eastern Ltd, New Delhi.
- Jenkins, White, (1981). Fundamentals of Optics. 4th Edition, Mc Graw-Hill., New York.
- Manas Chanda, (1982). Atomic Structure And Chemical Bond. 2nd edition, Tata McGraw Hill, New Delhi.
- Gurdeep Chatwal, Sham Anand, (1987). Spectroscopy. 3rd edition, Himalaya Publishers, Mumbai.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	BSC	Programme Title:	Bachelor of	Science
Course Code:	17UPS407	Title	Batch:	2017
Course Code:		Core VII: Physics Lab II	Semester:	III & IV
Hrs/Week:	3		Credits:	3

• To understand the theory with hands-on experience.

Course outcomes

K3	CO1	Able to understand optics and electromagnetic field
K4	CO2	Able to determine earth's constant M & H
K5	CO3	Understanding the principles behind every experiments

List of Experiments (Any fifteen):

- 1. Calibration of Voltmeter (Low & High Range) Potentiometer
- 2. Calibration of Ammeter(High Range) and Reduction Factor of T.G Potentiometer
- 3. Temperature Coefficient & Resistance of a coil of wire Potentiometer
- 4. E.M.F of a Thermocouple Potentiometer
- 5. Figure of merit Current & Voltage Sensitivity Ballistic Galvanometer
- 6. Comparison of Resistances Specific Resistance Ballistic Galvanometer
- 7. Absolute capacity of a Condenser Ballistic Galvanometer
- 8. Mutual Inductance of a Coil & Comparison of Mutual Inductance Ballistic Galvanometer
- 9. Determination of H Circular Coil carrying current –Vibration Magnetometer
- 10. Determination of M Field along the axis of a Circular coil carrying current
- 11. Thickness of a Wire Air wedge
- 12. Radius of curvature and Refractive index of a lens Newton's Rings
- 13. Refractive Index of a Liquid Spectrometer Hollow Prism
- 14. Refractive Index of a Prism Spectrometer i-d curve
- 15. Refractive Index of a Prism Spectrometer i-i' curve
- 16. Wavelength of different colours of Mercury spectrum and Dispersive power of a Grating Normal Incidence-Spectrometer
- 17. Refractive Index Spectrometer Small Angle Prism
- 18. Cauchy's Constants and Dispersive Power of a Prism Spectrometer

Text Book

• Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers, Book II.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	М	S
CO2	М	S	Н	S	Н
CO3	М	S	S	S	S

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.N.Revathi	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code: BSC		Programme Title: Bachelor of Science		cience
Course Code:	17 UPS508	Title	Batch:	2017
		Core VIII: Classical Dynamics	Semester:	V
Hrs/Week:	5		Credits:	5

Course Objective To understand the fundamental concepts in the dynamic of a particle and system of particles. •

Course outcomes

K1	CO1	To recollect the mechanics of a particle
K2	CO2	To define and demonstrate knowledge of the different formalisms in classical dynamics of a
		system
K3	CO3	To apply these formalisms to obtain equations of motion for simple systems
K4	CO4	To represent these formalisms for mechanical systems

Syllabus

Unit	Content	Hrs
I	MECHANICS OF A PARTICLE Linear momentum - Angular momentum-Work- Power- Kinetic energy Conservative forces- Potential energy- Conservation theorem for linear momentum Conservation theorem for angular momentum - Conservation theorem for energy - Motion of a particle under time dependent applied force –Motion of a free electron in oscillating field - Motion of a particle under damping forces - Motion of a particle under central force – Application to Projectile and simple harmonic vibrations	13
Ш	MECHANICS OF SYSTEM OF PARTICLES Conservation theorem for a system of particle; Conservation theorem for linear momentum, angular momentum and energy - Constrained motion - Types of constraints with examples - Forces of constraints - Degrees of freedom - Generalized coordinates - Generalized notation for Displacement, Velocity, Acceleration, Momentum, Force and Potential - <i>Limitations of Newton's Law</i>	13
ш	LAGRANGIAN FORMULATION Delta-Variation process - Hamilton's principle - Deduction of Lagrange's equations of motion from Hamilton's principle - Principle of virtual work - D'Alembert's principle - Deduction of Lagrange's equations by D'Alembert's principle for both conservative system and non-conservative system - Deduction of Hamilton's principle from D'Alembert's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation: Linear harmonic oscillator, Simple pendulum, <i>Compound pendulum</i> .	13
IV	HAMILTONIAN FORMULATION OF MECHANICS View points of the new development - Phase space and the motion of systems - Hamiltonian - Hamilton's canonical equations of motion - Cyclic coordinates - Physical significance of H - Advantages of Hamiltonian approach - Deduction of canonical equations from variational principle - Applications of Hamilton's equations of motion; Simple Pendulum, Compound pendulum, Linear harmonic oscillator.	13

V	HAMILTON - JACOBI FORMULATION Canonical or contact Transformations: Point Transformation, Canonical Transformation, Generating Function (Four forms) - Advantage of Canonical Transformations - Hamilton Jacobi method - Harmonic Oscillator problem by Hamilton Jacobi method - Hamilton Jacobi equation for Hamilton's Characteristic function.	13	
	Total contact hours		

• Italic font denotes self study

Text Books

- Gupta S.N. (1970). Classical Mechanics. Meenakshi Prakashan Publications, Meerut, (Unit I).
- Gupta, Kumar, Sharma, (2006). *Classical Mechanics*. 21st Edition, Pragati prakasan, Meerut, (Units II V).

Reference Books

• Herbert Goldstein, (1985). *Classical Mechanics*. 2nd Edition, Narosa publishing House, New Delhi.

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title :	Bachelor of Science	
		Title	Batch :	2017
Course Code:	17UPS509	Core IX: Relativity & Quantum	Semester	V
		Mechanics		
Hrs/Week:	5		Credits:	5

• To develop the skill to gain knowledge in Relativity & Quantum Mechanics

Course Outcomes

K1	CO1	To keep in mind the concepts and the consequences of special and general theory of relativity
K2	CO2	To understand the basic concepts of Quantum theory and the wave properties of particles
K3	CO3	To apply the wave equation to solve simple problems
K4	CO4	To interpret the different types of quantum numbers

Syllabus

Unit	Content	Hrs
Ι	SPECIAL THEORY OF RELATIVITY Galilean transformations and their limitations - Search for an absolute frame of reference: Michelson Morley experiment - Einstein's postulates and Lorentz transformations - Length contraction, Time dilation and Simultaneity – Variation of Mass with velocity - Mass-energy equivalence with experimental evidence	13
П	GENERAL THEORY OF RELATIVITY Relation between total energy, particle momentum and rest energy - Relativistic Doppler effect - Cerenkov radiation - World point and world line in Minkowski space - Inertial and gravitational mass - Principle of equivalence - Qualitative discussion of bending of light - <i>Precession of perihelion of mercury and gravitational red shift</i>	13
III	QUANTUM MECHANICSWAVE PROPERTIES OF PARTICLESde-Broglie waves – The de-Broglie wavelength – Expression for group velocity –Experimental study of matter waves : Davisson and Germer's experiment -Heisenberg's Uncertainty principle and its illustrations: Gamma ray microscope &Diffraction of a beam of electrons by a slit -Properties of wave function	13
IV	SCHRÖDINGERS EQUATION AND ITS APPLICATIONS Time dependent and Time independent forms - Particle in a box: Infinite square well potential - Potential step - The barrier penetration problem - Linear Harmonic oscillator - <i>The rigid rotator</i>	13
V	QUANTUM THEORY OF HYDROGEN ATOM Schrödinger's equation for the Hydrogen atom - Separation of variables- Expression for the energy of the electron in the ground state – Significance of Quantum numbers : Principal Quantum number , Orbital Quantum number & Magnetic Quantum number - Electron probability density	13
	Total contact hours	65

• Italic font denotes self study

Text Books

- Murugesan R. (2003). *Modern Physics*. 11th Edition, S.Chand, NewDelhi, (Units I IV).
- Arthur Beiser, (1997). *Concepts of Modern Physics*. 5th Edition, Tata McGraw Hill, NewDelhi, (Unit V).

Reference Books

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st Edition, Addison Wesley.
- Mathews, Venkatesan, (2002). A Text Book of Quantum Mechanics, Tata McGraw Hill Company Ltd, New Delhi.
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*, Himalaya Publishing Company, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	Н	S	Н	S
CO3	S	Н	Н	Н	S
CO4	S	Н	S	Н	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS510	Major Elective I: Basic Electronics & Circuit System	Semester:	V
Hrs/Week:	5		Credits:	5

• To understand the basic concepts of electronics and to implement the electronic circuits to various industrial applications.

Course outcomes

K1	CO1	To recollect the fundamental concepts and developments of electronics
K2	CO2	To understand the construction and operations of semiconductor devices
K3	CO3	To apply the knowledge of basic theorems in analog circuits
K4	CO4	To design electronic and optoelectronic circuits and interpret the output

Syllabus

Unit	Content	Hrs
Ι	DC CIRCUITS AND ALTERNATING CURRENTS DC Circuits: Current, Voltage, Resistance, Ohm's Law, Joule's Law, Resistors and Batteries - Series and Parallel Circuits - Networks - Kirchoff Rules - Thevenin's Theorem - Norton's Theorem - Maximum power transfer theorem – Proportional Voltage and Current formula - Ammeter, Voltmeter, Ohmmeter and Multimeter (Basic ideas) - Alternating currents: Frequency, Amplitude and Phase - RMS value and Power - Capacitance and Inductance - <i>Transformer</i>	13
Π	SEMICONDUCTOR DEVICES AND CIRCUITS Semiconductor and Energy bands - Doped Semiconductor - PN Junction diode and Zener diode - Characteristics - Half wave, Full wave and Bridge rectifiers – Capacitance filter-Two pin regulated power supply - Voltage doublers - Clippers and Clampers - Transistor and action - Common base and Common emitter Configurations - Relations between α and β - Load line and Operating point - Stability - Voltage divider Self bias - JFET and its characteristics	13
Ш	AMPLIFIERS & OSCILLATORS Principle of amplification - Classification of amplifiers - Common emitter single stage amplifier and frequency response - Multistage amplifiers (Basic ideas) - Concept of feedback and Effect of negative feed back (qualitative) - Barkhausen criterion - Basic Oscillatory circuit and Classification of oscillators - Hartley, Colpitts and Phase shift Oscillators (Circuit operations)	13
IV	OPERATIONAL AMPLIFIER Typical stages of an Op Amp - Ideal Op Amp and characteristics - Input offset voltage, Offset current, Bias current and Slew rate (Definitions) - Inverting Op Amp - Noninverting Op Amp - Differential Op Amp - Scale and Phase changers - Adder and Averager – Subtractor, Differentiator and Integrator	13
V	OPTOELECTRONIC DEVICES Optical radiation - Flux and illumination - Structure, variation of resistance & speed response of a Photo detector - Photovoltaic cells - Photodiodes - Phototransistors - Light beam detector - Electronic slave flash control - Window detector - LED: Bar graph display, drivers and LED arrays - <i>Optically coupled isolator (Basic ideas)</i>	13
	Total contact hours	65

Seminar, Assignment, Experience discussion, PPT

Text Books

- James J.Brophy, (1990). *Basic Electronics for Scientists*. 5th Edition, McGraw Hill Publishing Company, New York, (Unit I).
- Sadasiva Biswal, (2001). *Basic Electronics* (*Vol.I*). Atlantic Publishers and Distributors, (Units II &III).
- Swaminathan Mathu, (1985). *Electronics: Circuits and Systems*. 1stEdition, Howard W.Sams & Co., Inc, New York, (Units IV&V).

Reference Books

- Narayana Rao B.V., (1994). *Principles of Electronics (Vol. I & II)*. Wiley Eastern Limited & New Age International Limited, New York.
- Norman Lurch, *Fundamentals of Electronics*. 3rd Edition, John Wiley & Sons.
- Ramakant A.Gayakwad, (1997) *Op-Amps & Linear Integrated Circuits*. 3rd Edition, Prentice- Hall of India, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	Н	S	Н	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS511	Major Elective II: Digital Principles and its applications	Semester:	v
Hrs/Week:	5		Credits:	5

• To study the number system, Logic circuits and its application and to understand the architecture and instruction set of 8085 microprocessor

Course outcomes

K2	CO1	Understanding the operations of BCD numbers and memory allocation in computers
K5	CO2	Develop effective problem solving abilities
K4	CO3	Analyze electronic circuits
K3	CO4	Apply the concept of basic electronic devices to design various circuits

Syllabus

Unit	Content	Hrs
Ι	NUMBER SYSTEMS AND CODES Binary, octal, decimal, hexadecimal number system: Addition, Subtraction, Multiplication & Division – Conversion of number systems - one's complement and two's complement subtraction - BCD number system, Gray code, gray to binary and binary to gray conversion, Excess 3 code – <i>ASCII codes</i>	13
II	LOGIC GATES OR, AND and NOT gates - NAND and NOR gates - Universal building blocks - XOR and XNOR gates - Demorgan's theorems - Laws and theorems of Boolean algebra - Simplification of Boolean expressions - Karnaugh map - Pairs, quads and octets - Sum of product method and simplifications - Don't care conditions - Product of sum method and simplifications	13
	ARITHMETIC AND DATA PROCESSING CIRCUITS	
III	Half and full adders - Half and full subtractors - Parallel binary adder and subtractor - Multiplexers - Demultiplexers - 1 - of - 16 decoder - BCD to decimal decoder - Seven segment decoders - Encoders	13
IV	FLIP FLOPS, REGISTERS AND COUNTERSRS Flip Flop - D Flip Flop - Edge triggering - JK and Master slave Flip Flop - Serial in serial out - Serial in parallel out - Parallel in serial out - Parallel in parallel out shift register -Asynchronous Mod 8 up and down counters - Decoding gates - Synchronous Mod 8 up and down counters - Mod 3, Mod 5, and Mod 10 counters - Presettable counter - Digital clock	13
V	MICROPROCESSOR ARCHITECTURE AND PROGRAMMING Organization of a Microcomputer system – Architecture of the 8085 - Microprocessor instruction set and computer languages - Overview of the 8085 instruction set: Data transfer, Arithmetical, Logical, Branch, Stack, I/O & Machine control groups - Addressing modes - Programming the 8085: The programming process - The stack and subroutines - Simple programming examples	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Text Books

- Malvino A.P, Leach D.P. (2000). *Digital Principles and Applications*. 4th Edition, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, (Units I IV).
- Aditya P.Mathur, (1997). Introduction To Microprocessor. 3rd Edition, Tata McGrawHill, New Delhi, (Units V).

Reference Books

• Ramesh S.Gaonkar, (1997). *Microprocessor Architecture, Programming And Applications With The 8085.* 3rd Edition, Penram International Publishing, India.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	М	М	L
CO2	М	S	S	S	Н
CO3	М	S	S	S	S
CO4	М	М	S	М	М

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.N.Revathi	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS5S1	Skill based Elective I: Mechanical Measurements	Semester:	V
Hrs/Week:	1		Credits:	2

• To enrich the basic foundation and inspire interest for the knowledge in Mechanical measurements

Course outcomes

K1	CO1	To understand the operational features, limitations and difficulties inherent in the instruments
K2	CO2	To apply the basic principle to develop the mechanical measurement systems
K3	CO3	To implement the operation and construction to infer the instrument characteristics
K4	CO4	To evaluate the accuracy, error and calibration of an instrument

Syllabus

Unit	Content	Hrs
Ι	INSTRUMENT CHARACTERISTICSSTATIC TERMS AND CHARACTERISTICS:Range and span - Accuracy, error and correction - Calibration - Hysteresis -Dead zone - Drift - Sensitivity - Stability - Linearity - Back lash - StictionDYNAMIC TERMS AND CHARACTERISTICS:Speed of response and measuring lag - Fidelity and dynamic error - Overshoot -Dead time and Dead zone - Frequency response	3
II	TRANSDUCERS Transducer description - Variable resistance transducer - Capacitance transducer - Photoelectric transducer - Piezo electric transducer	3
III	PRESSURE MEASUREMENT Terms - Piezometer - U tube double column monometer – Bourdon gauge - McLeod gauge - CRO for varying pressure measurement	3
IV	FLOW MEASUREMENT Nature of flow - Cup and Vane anemometers - Hotwire anemometer - Ultrasonic flow meter - Thermal flow meter - <i>Shadograph</i>	2
V	MEASUREMENT OF DENSITY AND HUMIDITY Hydrometer – Density measurement using LVDT – Electrical Hygrometers – Sling Psychrometer	2
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Kumar, D. S. (1997). *Mechanical Measurements And Control*. Metropolitan, Third Edition, New York, (Units I IV).
- Sawhney A. K. Puneet Sawhney, (2004). A Course in Mechanical Measurements And Instrumentation. Dhanpat Rai & Co, 12th Edition, New Delhi, (Unit – V).

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	S	Н
CO2	Н	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr. P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS5S2	Skill based Elective I:	Semester:	V
		Fundamentals of Biophysics	Semester:	v
Hrs/Week:	1		Credits:	2

• To develop the basic knowledge about Biophysics and its Applications

Course outcomes

K1	CO1	To understand the physical principles of the biological phenomena.
TZO	000	
K2	CO2	To apply the separation and physico-chemical techniques to study biological structure
K3	CO3	To implement the characteristics of a biological system using the concept of physics and
		chemistry
K4	CO4	To evaluate the physical and chemical properties of biological applications

Syllabus

Unit	Content	Hrs
Ι	LAWS OF PHYSICS AND CHEMISTRY Quantum Mechanics – Electronic structure of Atom – Molecular orbitals and Covalent bonds – Molecular Interactions – Strong and Weak interaction – Thermodynamics – Entropy and Enthalpy – <i>Free energy of a</i> <i>system</i>	3
II	MOLECULAR ALPHABETS OF LIFE Introduction to the molecular structure and function of Proteins, Nucleic acids, Carbohydrates and Lipids.	2
Ш	BIOMOLECULAR SEPARATION TECHNIQUES Chromatography: Column, Thin Layer, Ion exchange, Molecular exclusion and Affinity Chromatography – Electrophoresis – Gel Electrophoresis.	2
IV	PHYSIOCHEMICAL TECHNIQUES Ultra centrifugation – Viscosity – Light scattering measurements – Different types of Light microscopy – Basics of TEM, SEM – Introduction to X-ray crystallography and NMR.	3
v	BIOMECHANICS AND NEURO-BIOPHYSICS Mechanical properties of muscles – Biomechanics of cardiovascular system – The nervous system – Physics of membrane potentials – Sensory mechanisms – The Eye – <i>Physical aspects of hearing</i> .	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• Vasantha Pattabhi,Gautham N. (2002). *Biophysics* Narosa Publishing House.New Delhi, (Units I-V).

Reference Book

• Rodney Cotterill, *Biophysics An Introduction*. John Wiley &Sons Ltd, England.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	М	S	Н
CO2	S	Н	S	Н	М
CO3	М	Н	Н	Н	S
CO4	S	S	М	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr. P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:BSCP		Programme Title:	Title: Bachelor of Science	
Course Code:	17UPS612	Title	Batch:	2017
Course Code:		Core X: Mathematical Physics	Semester:	VI
Hrs/Week:	5		Credits:	5

• To apply the concepts of Mathematics in Physics and to acquire the basic knowledge about mathematical methods

Course outcomes

K1	CO1	To enrich the knowledge about mathematical concepts in Physics
K4	CO2	Able to relate mathematics and physics to understand nature
K3	CO3	Able to apply skills of mathematical modeling in applied fields
K3	CO4	To implement numerical methods in research fields

Syllabus

Unit	Content	Hrs
I	VECTORS Gradient of a scalar field – Line, Surface and Volume integrals – Divergence of a vector function – Curl of a vector function and its physical significance – Important vector identities – Gauss divergence theorem – Stokes theorem – Curvilinear co-ordinates – Cylinderical co-ordinates (r,θ) - Spherical polar co-ordinates (r,θ,Φ) – Grad, Divergence and curl in terms of curvilinear, cylindrical and spherical polar co- ordinates	13
П	MATRICES Matrix – Definition – Types of matrices – Rank of matrix – transpose matrix and its properties – Conjugate of a matrix and its properties – Conjugate transpose and its properties – Symmetric and Anti symmetric matrices – Hermitian and skew Hermitian - Characteristic equation of a matrix - Eigen values, Eigen vectors - Cayley Hamilton theorem – <i>Dirac matrices</i>	13
III	LAPLACE TRANSFORM Laplace transform – Properties of Laplace transforms – Problems – Inverse Laplace transform : Properties of Inverse Laplace transform – Convolution theorem – Evaluation of Inverse Laplace transforms by convolution theorem - Problems	13
IV	GROUP THEORY Concept of a group - Abelian group - Generators of finite group - <i>Cyclic group</i> - Group multiplication table (Qualitative analysis) - Group of symmetry of a square - The Rearrangement theorem - Subgroups - Lagrange's theorem for a finite group - Cosets- Conjugate elements and classes - Product of classes - Complexes - Conjugate subgroups, Normal subgroups and factor groups - Isomorphism and Homomorphism - Permutation Groups	13
V	NUMERICAL METHODS Solution of algebraic and transcendental equations: The Bisection method - The iterative method - Method of false position - Newton-Raphson method - Solution of ODE: Taylor's series method - Euler's method - Runge Kutta II order method - Trapezoidal Rule - Simple problems	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

- Sathyaprakash, (2005). Mathematical Physics. Sultan Chand & Sons, New Delhi, (Units I IV).
- Sastry S.S. (2003). Introductory Methods of Numerical Analysis. 3rd Edition, Prentice Hall Of India, (Unit V).

Reference Books

- Gupta B.D. (1989). *Mathematical Physics*. 3rd Edition, Vikas Publication House, Noida.
- Louis A.Pipes, Lawrence R.Harvill, (1970). *Applied Mathematics For Engineers And Physicists* Mc Graw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). Mathematical Physics. Wiley Eastern Limited, New Delhi.
- Venkataram M.K. Numerical Methods in Science and Engineering. The National Publishing Company, New Delhi.
- Raman K.V. Group Theory. Tata McGraw Hill publishing company Ltd, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S
CO2	М	S	S	S	М
CO3	S	М	М	S	М
CO4	М	М	М	М	S

• Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	17UPS613	Title	Batch:	2017
	1/0F3015	Core XI: Atomic & Nuclear Physics	Semester:	VI
Hrs/Week:	5		Credits:	5

• To understand the structure and properties of electron and the nucleus Course outcomes

K1	CO1	Develop understanding about the electronic and nuclear structure of atoms		
K2	CO2	Appreciate the influence of X-rays, atomic and nuclear physics on modern scientific		
		developments		
K3	CO3	Analyze the key areas in which atomic and nuclear physics affects our everyday living		
K4	CO4	Apply various tools and techniques to examine and understand the processes within material		
		industry and medical applications of nuclear phenomena		

Syllabus

Unit	Content	Hrs
Ι	CONCEPT OF ELECTRON Charge of electron by Millikan's oil drop method - J.J Thomson's method to determine e/m - Positive rays - Isotopic constitution of elements - Photoelectric effect - Experimental investigations - Einstein's equation - Millikan's experiment. STRUCTURE OF THE ATOM Bohr's theory of Hydrogen atom - Excitation & Ionisation potentials - Experimental verification of discrete atomic energy levels - Correspondence principle - Sommerfeld model & Relativistic effects - Hyperfine structure - Vector atom model - Quantum numbers - Coupling schemes - Pauli exclusion principle - <i>Electronic</i> <i>configuration of an atom</i> .	13
II	X-RAYS Origin of X rays - Production & detection - Properties - Diffraction of X rays (Laue spots) - Bragg's Law - Bragg's X ray Spectrometer - Determination of crystal structure by Powder crystal method - Continuous and Characteristic X ray spectrum - Mosley's Law and significance - Theory of Compton Scattering - Experimental verification - Applications of X rays (Basic ideas)	13
III	 NUCLEAR MODELS Properties of nucleus - Binding energy of the nucleus and packing fraction - Nuclear stability - Nuclear models: Liquid drop model and Semi empirical mass formula - Shell model (Qualitative ideas). RADIOACTIVITY The law of radioactive decay and decay rate - Half life and Mean life - Alpha decay: spontaneous decay - General characteristics - Beta decay: Condition for spontaneous decay - Characteristics of beta ray spectra - Gamma decay: Gamma ray emission - Internal conversion. 	13
IV	NUCLEAR REACTIONS, DETECTORS AND ACCELERATORNuclear reaction energy - Reaction cross section - Nuclear fission - Energy releasedin fission of U235 - Chain reaction - Fission reactor - Nuclear fusion - Fusion reaction- Advantages and problems of fusion.Ionization chamber: Simple Ionization chamber - Proportional counter - GM counter- Scintillation counter - Linear accelerator - Cyclotron.	13
V	ELEMENTARY PARTICLES AND COSMIC RAYS Fundamental forces in nature - Classification of elementary particles based on interactions - Conservation laws - Strange particle and Strangeness - Quarks - Quark model - Cosmic rays - Primary and Secondary cosmic rays - Cosmic ray showers - Positron - Pair production - Annihilation of matter - Mesons - Origin of cosmic rays.	13
	Total contact hours	65

• Italic font denotes self study

Seminar, Assignment, Experience discussion, PPT

Text Books

- Rajam J.B. Prof.Louis De Broglie, (2000). *Atomic Physics*, Sultan Chand & Sons, New Delhi, (Units I & II).
- Raymond A. Serwey, Clement J. Moses & Curt Moyer, *Modern Physics*. 2nd edition, Saunders College Publishers, (Units III & IV).
- Atam P.Arya, *Elementary Modern Physics*. Addition Wesley publishing Company, (Unit IV)
- Murugeshan R, (2009) *Modern Physics*, S. Chand and Company Ltd, 14th edition, New Delhi, (Unit V).

Reference Books

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st edition, Addision Wesley.
- Sehgal Chopra, (2004) *Modern Physics*. 9th edition Sultan Chand & Sons, New Delhi.
- Pandya M.L. Yadev R.P.S, *Elements of Nuclear Physics*. 5th editions, KedarNath RamNath Publications.
- Tayal D. C. (1987). *Nuclear Physics* 4th edition, Himalaya Publishing House Publishers, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	М	М	S
CO2	S	М	S	М	S
CO3	S	М	S	М	L
CO4	S	S	S	L	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Dr.T.E.Manjulavalli	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Scie	Bachelor of Science	
		Title	Batch:	2017	
Course Code:	17UPS614	Core XII: Condensed Matter Physics & Statistical Mechanics	Semester:	VI	
Hrs/Week:	5		Credits:	5	
Course objective					

Course	object	tive
--------	--------	------

• To understand the electrical and magnetic properties of solids through classical and quantum statistics Course outcomes

K1	CO1	Have knowledge of general structure, characteristics and behavior of matter in whichever
		phase they are in
K2	CO2	Have knowledge of effect of external application of force and torque and also understanding
		the underlying theory in it
K3	CO3	To find the application of above mentioned behavior in innovative research work
K4	CO4	Realize the conceptual understanding of the facts through implications of Quantum statistical
		concept.

Syllabus

Unit	Content	Hrs
Ι	 BONDING IN SOLIDS Bonding in solids - Ionic bonding - Covalent bond - Metallic bond - Intermolecular bonds - Dispersion bonds - Dipole bonds - Hydrogen bonds (Formation and properties) CRYSTAL PHYSICS Lattice points and space lattice - Unit cells and lattice parameters - Crystal systems - Symmetry elements in crystals - The Bravais lattices - Metallic crystal structures - Relation between the density of crystal material and lattice constant in a cubic lattice - Other cubic structures - Miller Indices - Reciprocal lattice (Construction only) 	13
П	 ELECTRICAL PROPERTIES OF SOLIDS Classical free electron theory of metals and its draw backs - Quantum theory of free electrons - Joule's law - Hall effect - Experimental determination of Hall coefficient Band theory of solids - Electron in a periodic field of a crystal (the Kronig - Penney model) - Brillouin zones MAGNETIC PROPERTIES OF SOLIDS Different types of magnetic materials - Langevin's Classical theory of diamagnetism - Langevin's and Weiss theory of paramagnetism - Weiss molecular field theory of ferromagnetism - Domain theory of ferromagnetism - Antiferromagnetism - Ferrimagnetism 	13
III	SUPERCONDUCTIVITY Properties of superconductors - Effects of magnetic field - Persistent current - Critical current - The Meissner effect - Isotope effect - Penetration depth - Type I and Type II superconductors - Electronic specific heat - Energy gap measurements - BCS theory - Josephson tunneling (simple ideas only) - High temperature superconductors - <i>Applications of superconductivity (simple ideas only)</i>	13
IV	CLASSICAL STATISTICAL MECHANICS Phase space of a microscopic particle - Density of quantum states of energy of a particle - Volume occupied by a quantum state - Isolated system - Statistical equilibrium - Statistical postulates - Distribution function, entropy and probability - Maxwell - Boltzmann statistics and its application - Total internal energy - Specific heat at constant volume - Speed distribution - Most probable speed, average, root mean square speeds – Doppler broadening of spectral lines	13
V	QUANTUM STATISTICAL MECHANICS Bose-Einstein energy distribution - Basic postulates - B-E energy distribution function - B-E energy distribution law for continuous variation of energy - Planck's law of radiation - Fermi - Dirac energy distribution - Basic postulates - Energy distribution function - Fermi energy - Energy distribution curve - Expression for the Fermi Energy for electrons in a metal - Fermi temperature and Fermi velocity - Thermionic emission - Richardson Dushman equation – Comparison of M-B, B-E and F-D statistics	13
	Total contact hours	65

Text Books

- Pillai S.O. (2005). Solid State Physics. 6th Edition, New age international (P) Ltd, New Delhi, (Units I III).
- Serway R. Moses C. Moyer C.A. (1997). *Modern Physics*. 2nd edition, Saunders college publishers, (Unit III).
- Kamal Singh, Singh S. P. (1985). *Elements Of Statistical Mechanics*. 1st Edition, S.Chand & Company Ltd, NewDelhi, (Units IV &V).

Reference Books

- Agarwal B.K. Melvin Eicher, (1975). Statistical Mechanics. Wiley Eastern Ltd, Bangalore.
- Gupta S.L. Kumar V. (1987). Solid State Physics. 6th Edition, K.Nath & Co., Meerut.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title :	Bachelor of	Science
		Title	Batch :	2017
Course Code:	17UPS615	C Programming & Information Security	Semester	VI
Hrs/Week:	5		Credits:	5

Course Objective To develop the skill to gain knowledge in Programming in C & Information Security Course Outcomes (CO)

		Course Outcomes (CO)
K1	CO1	To remember the basic concepts of C programming language
K2	CO2	To understand the role of control statements in C
K3	CO3	To apply the concept of functions, structures and pointers in C
K4	CO4	To review the need for information security

Syllabus

Unit	Content	Hrs
Ι	INTRODUCTION TO C Basic Structure of C Programs - Character set - Key words and Identifiers - Constants - Variables - Data types – Declaration of variables – Assigning values to variables – Defining symbolic constants - Arithmetic operators - Relational operators - Logical operators - Assignment operators - Increment and decrement operators - conditional operators - Precedence of operators - Formatted input & output statements	13
Ш	CONTROL STRUCTURES, ARRAYS & STRINGS Simple if - ifelse - Nesting of ifelse - else if ladder - Switch - while - dowhile - for statements - Declaration and initialization of one & two dimensional arrays - Declaring and initializing string variables - String handling functions	13
III	FUNCTIONS, STRUCTURES AND POINTERS Definition of functions - Return values and their types - Category of functions: No arguments and no return values - Arguments but no return values - Arguments with return values - Recursion - Defining a structure - Declaring structure variables - Accessing structure members - Structure initialization - Declaring and initializing pointers - Pointers as function arguments - Pointers and structures	13
IV	INFORMATION SECURITY Components of Communications System – Transmission Media. Protocol – Definition – Introduction to TCP / IP – Wireless Network – Basics of Internet. Types of Attack: Phishing, Spoofing, Impersonation, Dumpster diving – Information Security Goals. Information Security Threats and Vulnerability: Spoofing Identity, Tampering with data, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege.	13
V	Authentication – Password Management – E-Commerce Security – Windows Security. Network Security: Network Intrusion and Prevention Systems – Firewalls – Software Security. Web Security: User authentication, Authentication – Secret and Session Management, Cross Site Scripting, Cross Site Forgery, SQL Injection. Computer Forensics – <i>Steganography</i> .	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- E.Balagurusamy, (2004). *Programming In Ansi C*. Tata McGraw Hill Publishing Company, New Delhi, (Units III V).
- Michael E. Whitman, Herbert J. Mattord, *Principles of Information Security*, Cenage Learning, 4th Edition.

Reference Books

- Ravichandran.D, (1998). Programming In C. New Age International (P) Limited Publishers.
- Yashvant Kanetkar, (1995). Let Us C. 2nd Revised Edition, BPB Publications, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	S	S	Н	Н
CO3	S	Н	Н	Н	S
CO4	S	S	S	Н	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS6S3	Skill based Elective II: Environmental Instrumentation	Semester:	VI
Hrs/Week:	1		Credits:	2

Syllabus

Unit	Content	Hrs
Ι	TEMPERATURE MEASUREMENTS Temperature scales - The ideal gas - Thermometer - Temperature measurement by mechanical effects - Temperature measurements by electrical effects : Electrical resistance thermometer - Thermistors - Thermoelectric effects - Quartz-crystal thermometer - <i>Liquid crystal thermography</i>	3
П	RADIATION MEASUREMENTSRadiation pyrometers – Blackbody conditions – Radiation reactive elements –Total radiation pyrometers – Infrared pyrometers – Optical pyrometers	3
III	THERMAL MEASUREMENTS Detection of thermal radiation – Measurement of emissivity – Reflectivity and Transmissivity measurements – Solar radiation measurements	2
IV	NUCLEAR RADIATION MEASUREMENTS Detection of Nuclear radiation – Geiger Muller Counter – Ionisation chambers – The Scintillation counter – <i>Neutron detection</i> .	2
V	AIR POLLUTION SAMPLING AND MEASUREMENTS Units of pollution measurements – General air sampling train- gas sampling techniques – Sulfur dioxide measurements – Combustion products measurements – Opacity measurements	3
	Total contact hours	13

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Sawhney A. K. Puneet Sawhney, (2004), *A Course in Mechanical Measurements and Instrumentation*, Dhanpat Rai & Co Pvt Ltd, (Units I & II).
- Jack P. Holman, (2000), Experimental Methods for Engineers, Tata McGraw Hill, New Delhi, (Units III V).

Reference Books

• Rangan C. S. Sharma G. R. Mani V.S.V. (1983), *Instrumentation Devices and Systems*, Tata McGrawHill, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	М	Н
CO2	S	Н	S	Н	М
CO3	М	Н	Н	S	S
CO4	S	М	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.T.E.Manjulavalli	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2017
Course Code:	17UPS6S4	Skill based Elective II: Fundamentals of Astrophysics	Semester:	VI
Hrs/Week:	1		Credits:	2

• To explore the basic knowledge and recent aspects of Space science, Quasars and Cosmology

Course outcomes

K 1	CO1	To recollect the orgin and destiny of universe, astronomy, stars, quasars, cosmology etc.,
K2	CO2	To get the fundamental ideas of observational astronomy, stars, white dwarfs, nature of black
		holes and big bang theory.
K3	CO3	To implement the phenomena and processes associated with galaxy, stellar and formation of
		planetary systems, dark matter and energy
K4	CO4	To figure out the concept of red shift, expansion of universe, accelerating universe is essential
		for scientific and research applications

Syllabus

Unit	Content	Hrs
Ι	OUR PLACE IN THE UNIVERSE A tour of the Universe – Scale and Contents: Planets, Stars, Galaxies, Light years and the Interstellar medium	2
П	OBSERVATIONAL ASTRONOMY The Electromagnetic spectrum - Geometrical Optics: Ray Diagrams, Focal length, Magnification – Diffraction: Resolving Power, Airy Disc, Diffraction Limit – Telescopes: Reflecting, Refracting, Multi-wavelength.	3
III	STARS Properties of stars – Stellar structure and Evolution – Introduction to supernovae – Stellar remnants – White dwarfs – Neutron stars – <i>Black holes</i>	2
IV	QUASARS Constituents of Galaxies - General structure – Mass of the Galaxy – Cosmic Rays - External Galaxies: Classification and Spectra of Galaxy – <i>Active Galaxies and Quasars</i> .	3
V	COSMOLOGY Red shift and Expansion of the Universe – Hubble's Law – The Age of the Universe – The Big Bang – Introductory to Cosmology: The Cosmological Principle, Homogeneity and Isotropy, Olber's Paradox – Introductory to Cosmological Models: Critical Density, Geometry of Space, The fate of the Universe – Dark energy and the Accelerating Universe.	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Mapping

Seminar, Assignment, Experience discussion, PPT

Text Book

• Baidyanath Basu, Tanuka Chattopadhyay, Sudhindra Nath, (2010) *An Introduction to Astrophysics*. PHI Learning Private Limited. New Delhi, (Units I – V).

Reference Book

• Abhyankar, K.D. (1999). Astrophysics of The Solar System, University Press Limited. Hyderabad.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	S	М
CO2	Н	М	S	Н	Н
CO3	М	Н	L	S	S
CO4	S	М	S	S	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of	Science
Course Code:	17UPS616	Title	Batch:	2017
Course Code:		Core XIII: Electronics Lab	Semester:	V & VI
Hrs/Week:	3		Credits:	3

• To provide a basic grounding in the field of Electronics and to serve as a hint for the student to the more advance techniques.

	Course outcomes						
K3	CO1	To get elementary knowledge of components used in concepts of electronic circuits					
K4	CO2	To get familiarize with the electronics through experiment					
K5	CO3	To understand the function of amplifiers, oscillators etc					

List of Experiments (Any fifteen):

- 1. Verification of Thevenin's theorem
- 2. Verification of Norton's theorem
- 3. Verification of Maximum power transfer theorem
- 4. Rectifier diode and Zener diode characteristics
- 5. Rectifiers and Filters
- 6. Voltage doubler
- 7. Two pin regulated power supply
- 8. Measurement of Band gap energy of Semiconductors
- 9. Transistor characteristics Common Base mode
- 10. Transistor characteristics Common Emitter mode
- 11. JFET characteristics
- 12. Transistor voltage amplifier Single stage
- 13. Hartley Oscillator
- 14. Colpitts Oscillator
- 15. Astable Multivibrator
- 16. Inverting and Non-inverting Operational amplifiers
- 17. Adder and Subtractor using Operational amplifiers
- 18. CRO Familiarization

Text Books

- Paul B.Zbar, Malvino, Miller, (1983). Electronics: A Text- Lab Manual. Mc.Graw Hill, New Delhi.
- Subramanian S.V. (1983). *Experiments in Electronics*. Macmillan India, Ltd, New Delhi.

Reference Books

- Paul B.Zbar, Joseph Sloop, (1997). *Electricity & Electronics Fundamentals: A Text-Lab Manual*. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, Mc.Graw Hill, New Delhi.
- Bhargowa N.N. (1984). Basic Electronics and Linear Circuits. Tata Hill Publishing Co. Ltd.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	М	S
CO2	М	S	Н	S	Н
CO3	М	S	S	S	S

Mapping

 $S-Strong;\,H-High;\,M-Medium;\,L-Low$

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of	Science
Course Code:	17UPS617	Title	Batch:	2017
Course Code:		Core XIV: Digital & Microprocessor Lab	Semester:	V & VI
Hrs/Week:	3		Credits:	3

• To be acquainted with the basics and working of Electronic Digital circuits and Microprocessor.

Course outcomes

K3	CO1	Determine the behavior of a digital logic circuit
K4	CO2	Translate the Boolean equations/expressions to efficient combinational and sequential
		circuits.
K5	CO3	Write simple programmes to run an 8085 microprocessor.

List of Experiments (Any fifteen):

- 1. Study of Various logic gates using ICs and basic logic gates using discrete components
- 2. Study of NAND and NOR as Universal building blocks
- 3. Microprocessor Addition and Subtraction
- 4. Construction and Study of Half and Full adders
- 5. Verification of Demorgan's theorems and problem solving through logic circuits
- 6. Microprocessor 1's and 2's complement
- 7. Construction and Study of Half and Full Subtractors
- 8. Construction and Study of RS, D and JK flip-flops
- 9. Microprocessor Multiplication
- 10. Construction and Study of Parallel binary adder
- 11. Construction and Study of Multiplexers and Demultiplexers
- 12. Microprocessor Ascending and Descending orders
- 13. Construction and Study of Parallel binary Subtractor
- 14. Construction and Study of Shift registers
- 15. Microprocessor Addition of an array of numbers and comparison of two numbers
- 16. Construction and Study of MOD 3 and MOD 5 up counters
- 17. Construction and Study of BCD to decimal decoder
- 18. Microprocessor Division

Text Books

- Albert Paul Malvino, Donald P. Leech, (1987). Digital Principle And Applications. 3rd Edition, Mc.Graw Hill.
- Paul B.Zbar, Malvino, Miller, (1983). Electronics: A Text- Lab Manual. Mc.Graw Hill, New York.

Reference Books

- Leech, (1986). *Experiments In Digital Principles*. 3rd Edition, Mc.Graw Hill, New York.
- Paul B.Zbar, Malvino, Sloop, (1997). *Electricity & Electronics Fundamentals: A Text-Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, Mc. Graw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd, New Delhi.
- Bhargowa N.N. (1984). Basic Electronics And Linear Circuits. Tata Hill Publishing Co Ltd, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	Н	S
CO2	Н	S	М	М	S
CO3	М	М	Н	Н	S

Mapping

 $S-Strong;\,H-High;\,M-Medium;\,L-Low$

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Dr.T.E.Manjulavalli	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title :	Bachelor of Science	
Course Code:	17UPS618	Title	Batch :	2017
		Computer Lab in C	Semester	VI
Hrs/Week:	2		Credits:	2

• To develop the skill to gain knowledge in C

Course Outcomes (CO)

K3	CO1	To keep in mind the basics of C programming
K4	CO2	To understand and become familiar with C programs
K5	CO3	To verify the concepts through simple programs

List of Programs:

- 1. Temperature Conversion
- 2. Largest /Smallest of three numbers
- 3. Quadratic equation
- 4. Fibonacci number
- 5. Armstrong number
- 6. Electric Power Consumption
- 7. Ascending/Descending order
- 8. Matrix Addition/ Subtraction
- 9. Matrix multiplication
- 10. Sorting of names
- 11. Multiplication Table
- 12. Function with arguments and with return values
- 13. Recursion function
- 14. Pointer to Structure
- 15. Pointer as function arguments

Text Book

• Balagurusamy E. (2004). Programming In Ansi C. Tata McGraw Hill Publishing Company, New Delhi.

Reference Books

- Ravichandran D. (1998). Programming In C. New Age International (P) Limited Publishers.
- Yashvant Kanetkar, (1995). Let Us C. 2nd Revised Edition, BPB Publications, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	Н	S	Н	Н
CO3	Н	Н	Н	Н	S

	ified by HOD Checked I	by CDC Approved by COE
Name: Dr.M.Karthika Name: Dr	K.Kandaswamy Name: Dr.M.	Durairaju Name: Dr.R.Muthukumaran
Signature: Signature	Signature:	Signature:

Programme code:	BSC	Programme Title :	Bachelor of Science	
Course Code:	17 UMS 3A3 /	Title	Batch :	2017
	17 UCY 3A3	Physics For Mathematics & Chemistry- I	Semester	III
Hrs/Week:	5		Credits:	4

• To develop the basic concepts of physics applied in chemistry and mathematics Course outcomes

K1	CO1	To understand the basic concepts of physics in electricity, semiconductors, optics and digital
		electronics
K2	CO2	To differentiate analog and digital systems
K3	CO3	To gain an enhanced knowledge on number systems and logical expressions
K4	CO4	To convert the expressions into useful circuits

Unit	Content	Hrs
Ι	ELECTRICITY AND MAGNETISM Electric field, Intensity & Potential - Potential due to a charged conducting sphere - Capacitance - Parallel plate capacitor - Energy stored in a charged capacitor - Kirchoff's law - Wheatstone's bridge - Potentiometer - Measurement of Resistance & EMF - Calibration of Ammeter & Voltmeter - <i>Biot Savart law</i> - Field along the axis of a circular coil - Determination of M & H - Electromagnetic induction	13
II	$\begin{array}{ c c c c c c c c } \hline WAVE \ OPTICS \\ \hline Young's \ double \ slit \ experiment \ - \ Coherent \ sources \ - \ Theory \ of \ interference \\ fringes \ - \ Interference \ due \ to \ reflected \ light \ (Thin \ films) \ - \ Colour \ of \ thin \ films \ - \\ Newton's \ rings \ - \ Determination \ of \ \lambda \ and \ \mu \ - \ Theory \ of \ plane \ transmission \ grating \\ - \ Determination \ of \ \lambda \ of \ Mercury \ light \ - \ Plane \ polarized \ light \ - \ Nicol \ prism \ as \\ Analyzer \ and \ Polarizer \ - \ Optical \ activity \ - \ Laurent's \ half \ shade \ Polarimeter \\ \end{array}$	13
III	SEMICONDUCTOR PHYSICS Semiconductor - Intrinsic and Extrinsic semiconductors - Junction diode and Zener diode characteristics - Half & Full wave Rectifiers - Regulated power supply - Transistor and its action - Common base and common emitter configurations - Relations between α and β	13
IV	NUMBER SYSTEMSBinary, octal, decimal, hexadecimal number system: Addition, Subtraction, Multiplication & Division – Conversion of number systems - one's complement and two's complement subtraction - BCD number system, Gray code, gray to binary and binary to gray conversion, Excess 3 code – ASCII codes	13
V	LOGIC GATES AND CIRCUITS OR, AND & NOT gates using Discrete components and ICs - NOR & NAND gates - Universal building blocks - Demorgan's theorems - XOR & XNOR gates - Laws and theorems of Boolean algebra - Simplification of Boolean expression - Half & full adders - Half & full subtractors	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Text Books

- Murugeshan R, (2008). Electricity and Magnetism, S.Chand & Company Ltd, New Delhi, (Unit I).
- Brijlal and Subramaniam, (1999). A Text Books Of Optics. S.Chand & Company Ltd, New Delhi, (Unit II).
- Theraja B.L, (1998). Basic Electronics Solid state. S.Chand & Company Ltd, New Delhi, (Unit III).
- Malvino and Leech, (1986). *Digital Principles and Applications*. Tata Mc Graw Hill Publishing Company, New Delhi (Units IV & V).

Reference Books

- Brijlal and Subramaniam, (1987). Electricity and Magnetism, S.Chand & Company Ltd, New Delhi.
- Sadasiva Biswal, (2001). *Basic Electronics*. Atlantic Publishers and Distributors.
- Narayana Rao B.V. (1994). *Principles of Electronics*. Wiley Eatern Limited New Age International Limited.

PSO CO	PS01	PSO2	PSO3	PSO4	PSO5
C01 \	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	S	S	S	М	S
C04	М	Н	Н	L	Н

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
	17UMS4A4 / 17UCY4A4	Title	Batch:	2017
Course Code:		Physics For Mathematics & Chemistry- II	Semester:	IV
Hrs/Week:	5		Credits:	4

Course Objective

• To develop basic knowledge in the field of fiber optics, atomic, nuclear and quantum physics

Course outcomes

K1	CO1	To understand the structure of atom and Nucleus
K2	CO2	Gain a basic knowledge of Quantum physics and special theory of relativity
K3	CO3	To get an insight in to the field of laser and fiber optics
K4	CO4	To appreciate the beauty of physics

Syllabus

Unit	Content	Hrs
I	ATOMIC PHYSICS Discharge of electricity through rarified gases - Cathode rays - Properties - Determination of charge of electron by Millikan's oil drop method -Positive rays - Thomson parabola method - Rutherford atom model - Bohr atom model - Hydrogen spectral series - Critical potentials - Sommerfield atom model - Vector atom model (qualitative) - <i>Pauli's exclusion principle</i>	13
II	NUCLEAR PHYSICS Basic properties of nucleus - Binding energy, Mass defect and Nuclear force - Liquid drop model - Law of radioactivity - Half life and Mean life - Radioactive dating - α , β and γ decay process (Basic ideas) - Nuclear fission - Chain reaction & Atom bomb - Nuclear reactors - Nuclear fusion & Sources of stellar energy - Thermonuclear reactions & Hydrogen bomb	13
Ш	QUANTUM PHYSICS Black body radiation and Planck's hypothesis - Photoelectric phenomena and Experimental investigations - Einstein's equation and Millikan's experiment - De Broglie's concept of Matter waves and De Broglie wavelength – G.P.Thomson Experiment - Uncertainty Principle - Postulates of wave mechanics - Wave function and significance - Schrodinger equation (one dimensional) - Eigen values and Eigen functions	13
IV	SPECIAL THEORY OF RELATIVITY Frames of reference - Newtonian Relativity - Michelson Morley experiment and explanation for negative results - Postulates of special theory of relativity - Lorentz transformation - Time dilation - Length contraction - Addition of velocities - Variation of mass with velocity - Equivalence of mass and energy	13
V	LASER OPTICS Concept of energy levels - Einstein's coefficients (qualitative) -Population inversion - Pumping methods - Essential elements and Action of laser system - Characteristics - Holography and Lasers in medicine (Basic ideas) FIBER OPTICS Construction and types of optical fiber - Critical angle - Propagation of light	13

Acceptance cone and Numerical aperture - Fiber optic communication system	
Total contact hours	65

Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Murugesan R. (2001). Modern Physics. S.Chand & Company Ltd, New Delhi, (Units I III).
- Pedrotti L. & Pedrotti S. (2008). *Introduction To Optics*. Prentice Hall international Edition, New Delhi, (Unit IV).
- Wayne Tomasi and Vincent F.Alisouskas. (1988). *Telecommunications*. Prentice Hall International, New Delhi,(Unit -V).

Reference Books

- Arthur Beiser, (2003). Concepts of Modern Physics. Addison Wesley Pvt Ltd.
- Raymond.A.Serway, (2007). *Physics For Scientists And Engineers*. Saunders College Publishing (Harcourt Brace College Publishers).

Mapping

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	Н	S	S	М	М
C04	М	Н	Н	L	Н

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
	17UMS4A5 /	Title	Batch:	2017
Course Code:	17UCY4A5	Physics Lab For Mathematics & Chemistry	Semester:	III & IV
Hrs/Week:	3		Credits:	4

• To enable the student to gain practical knowledge

Course Outcomes

К3	C01	To gain an in-depth knowledge and understanding of the functions of Potentiometer and Ballistic galvanometer
K4	CO2	To apply the concepts of physics on measurements and instrumentations of physical
		experiments
K5	CO3	To acquire enhanced practical skills in digital measurements

List of Experiments:

- 1. Refractive index of a Prism Spectrometer
- 2. Refractive index of a Lens Newton's Rings
- 3. Specific resistance of a Wire Potentiometer
- 4. Horizontal Component of Earth's Magnetic Field (H) Field along the axis of a Circular coil carrying current
- 5. Characteristics of PN Junction Diode
- 6. Basic Logic Gates Discrete Components & ICs
- 7. Demorgan's Theorems and Problem solving in Boolean Algebra through Logic Circuits
- 8. Half & Full Adder
- 9. NAND as Universal building block
- 10. Refractive index of a Prism i d Curve Spectrometer
- 11. Wavelength of Mercury source Grating Normal incidence Spectrometer
- 12. Calibration of Low range Voltmeter and Ammeter Potentiometer
- 13. Magnetic Moment (M) Field along the axis of a Circular coil carrying current
- 14. Characteristics of Zener Diode
- 15. Rectifiers & Filters
- 16. Two pin Regulated Power supply
- 17. Half & Full Subtractor
- 18. NOR as Universal building block.

Text Book

• Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Paul B.Zbar, Malvino, Miller, (1983). Electronics: A Text- Lab Manual. Mc.Graw Hill, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	Н	S	S	М	М

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by Verified by HOD		Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature: