Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS101	Title	Batch:	2018-2021
		Core I: Properties of Matter	Semester:	Ι
Hrs/Week:	3		Credits:	3

• To understand the basic concepts of gravitation and to get exposure to the properties of liquids and solids

Course outcomes

K1	CO1	To recollect the physical properties of different states of matter
K2	CO2	To understand the applications of the elastic properties of solids
K3	CO3	To implement the knowledge of properties for the thermal expansion of solids
K4	CO4	To analyze the diffusion of gases in various media

Syllabus

Unit	Content	Hrs
Ι	GRAVITATION Kepler's laws - Newton's law of gravitation - Gravitational constant : Boy's Method - Gravitational field and Gravitational potential - Potential energy - Escape velocity - Equipotential surface - Earthquakes - Seismic waves - <i>Applications of Seismology</i>	8
Ш	ELASTICITY Stress and Strain - Hooke's law - Types of Elasticity - Relation connecting the Elastic constants - Poisson' s ratio - Torsional pendulum - Determination of Moment of Inertia : The Inertia Table - Bending of beams - Bending moment – Depression of a beam Supported at the ends	8
Ш	VISCOSITY Viscosity - Coefficient of viscosity - Poiseuille's equation for the flow of liquid through a horizontal capillary tube – Experimental determination of coefficient of viscosity for a liquid - Motion in a viscous medium: Stoke's law - Determination of coefficient of viscosity of highly viscous liquid - Stoke's method	8
IV	SURFACE TENSION Surface tension - Surface energy - <i>Excess pressure inside a liquid drop and soap</i> <i>bubble</i> - Determination of surface tension of a bubble - Capillary rise - Energy required to raise a liquid in a capillary tube - Experimental study of variation of surface tension with temperature	8
V	DIFFUSION AND OSMOSIS Diffusion - Fick's law - Graham's law of diffusion of gases - Osmosis and osmotic pressure - Laws of osmotic pressure - Experimental determination of osmotic pressure	7
	Total contact hours	39

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• Mathur D.S. (2003). *Elements Of Properties Of Matter*. Shyam Lal Charitable Trust, New Delhi, (Units I - V).

Reference Books

- Brijlal & Subramaniam, (2000). Properties Of Matter. Vikas Publications house, New Delhi.
- Murugesan R. (1995). Properties Of Matter. S.Chand & Company Ltd, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	Н	М
CO2	Н	Н	S	Н	М
CO3	М	М	S	S	М
CO4	М	S	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.T.Ponraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS102	Title	Batch:	2018-2021
Course Coue:		Core II: Mechanics & Sound	Semester:	Ι
Hrs/Week:	5		Credits:	3

• To acquire a complete knowledge about mechanics and sound

		Course outcomes
K1	CO1	To remember the principles of rigid body, statics, dynamics and sound
K2	CO2	To understand the mechanics behind rigid body, projectiles and dynamics
K3	CO3	To analyze the characteristics of sound and requisites of good acoustics
K4	CO4	To solve problems based on dynamics

Syllabus

Unit	Content	Hrs
I	Projectiles Projectiles – Range – Expression for the range of projectile on the inclined plane – path of a projectile – Impulse – Direct and oblique impact – Expression for velocity after direct impact.	7
П	Statics and Dynamics Force of friction –Limiting friction – Laws of friction –Angle of friction – Definition and determination of centre of pressure – Expression for centre of pressure of a rectangular lamina with one side on the surface of the liquid – Laws of floatation–Definition for metacentre and metacentric height. Hydrodynamics Steady or streamline flow and turbulent flow (qualitative analysis) – Lines and tubes flow – Equation of continuity of flow–Bernoulli's theorem.	8
III	Rigid body dynamics Rigid body–rotational and vibrational motion –Torque–moment of inertia – radius of gyration –kinetic energy of rotation– M.I. of a fly wheel– experimental determination–precession (qualitative analysis).	8
IV	Sound Classification of Sound - Musical sound and Noise – Speech – Human voice – Human Ear – Characteristic of Musical Sound – Intensity of Sound – Measurement of Intensity of Sound – Decibel – Phon(Definitions only) – Velocity of Transverse waves along a stretched string – Laws of transverse vibration of strings – Melde's experiment – Resonance.	8
V	Acoustics and Ultrasonics Introduction – Reverberation – Sabine's Reverberation formula (qualitative analysis) – Determination of Absorption coefficient – Factors affecting Acoustics of buildings - Requisites for good acoustics in auditorium – Ultrasonics – Production of Ultrasonics: Piezoelectric oscillator – Detection of Ultrasonic waves – Acoustic grating - Applications of Ultrasonics: Depth of the sea and non-destructive testing	8
	Total contact hours	39

• Italic font denotes self study

Additional activities

Text Books

- Mathur D.S. (1996). Mechanics. S.Chand & Company Ltd, New Delhi, (Units I & III).
- Venkataraman M.K. (2014). Dynamics. Agasthiar Publications, Trichy, (Unit II).
- Brijlal. N. Subramaniam. (2002). *Text Book of Sound*. Vikas Publications house Pvt Ltd, NewDelhi, (Unit IV & V).

Reference Books

- Chakraborthy. B. K. (2001.)Mechanics and General properties of matter, (2001). Books & Allied (P) Ltd.
- Rajendran. V, Marikani. A.(1997) Applied Physics for Engineers. Tata Mc-Graw Hill, New Delhi.
- Mathur D.S. (2003). Elements Of Properties Of Matter. Shyam Lal Charitable Trust, New Delhi,

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Н
CO2	S	Н	Н	S	S
CO3	Н	S	S	Н	Н
CO4	S	Н	S	S	S

S – Strong; H – High; M – Medium; L – Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: S.Shanmuga Priya	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Mapping

Programme Code:	BSC	Programme Title:	Science	
Course Code:	18 UPS203	Title	Batch:	2018-2021
		Core III: Heat & Thermodynamics	Semester:	II
Hrs/Week:	5		Credits:	5

• To understand of the fundamental laws and principles of thermodynamics and heat transfer

Course outcomes

K1	CO1	To recognize the difference between heat and temperature
K2	CO2	To understand the fundamental laws and principles of heat transfer and theory of gases
K3	CO3	To acquire working knowledge on low temperature physics and its domestic applications
K4	CO4	To analyse and evaluate various thermodynamic cycles used for energy productions

Syllabus

Unit	Content	Hrs
	THERMOMETRY AND SPECIFIC HEATS	
	Concept of heat and temperature - Thermoelectric thermometer - Absolute zero and	
T	Ice point - Low temperature measurement - High temperature measurement -	13
1	Specific heat of a gas – $C_p \& C_v$ - Determination of C_v by Joule's differential steam	15
	calorimeter - Determination of C _p by continuous flow electrical method - Dulong	
	and Petit's law - Variation of Specific heat and Atomic heat with temperature.	
	KINETIC THEORY OF GASES	
	Kinetic theory of gases - Postulates - Derivation of gas equation - Maxwell's law of	
II	distribution of velocities - Experimental verification - Degrees of freedom and	13
	Maxwell's law of equipartition of energy – Vander waal's equation of state -	
	Critical constants - Corresponding states of matter	
	TRANSMISSION AND RADIATION OF HEAT	
III	Thermal conductivity - Forbe's method - Radial and cylindrical flow of heat -	
	Thermal conductivity of rubber - Stefan's law and experimental verification -	13
	Determination of Stefan's constant - Blackbody - Properties of thermal radiation -	
	Distribution of energy in the spectrum of a black body.	
	LOW TEMPERATURE PHYSICS	
	Porous Plug experiment and theory - Cascade process - Liquefaction of Oxygen -	
IV	Air (Linde's process) - Hydrogen (Cascade process) - Liquefaction of Helium -	13
	K.Onnes method - Helium I and Helium II - Production of low temperature -	
	Conversion of magnetic temperature to Kelvin temperature - <i>Electrolux refrigerator</i>	
	THERMODYNAMICS	
	Zeroth law of thermodynamics - Thermal equilibrium - Comparison of heat and	
**	work - First law of thermodynamics - Isothermal and Adiabatic process - Work	10
V	done during Isothermal and Adiabatic process - Reversible and Irreversible process -	13
	Carnot's reversible engine - Carnot's theorem - Second law of thermodynamics -	
	Entropy : Reversible and Irreversible process - Third law of thermodynamics -	
	Temperature - Entropy diagram	65
	Total contact hours	65

• Italic font denotes self study

Additional activities

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	М	Н
CO2	Н	М	S	Н	М
CO3	М	Н	Н	S	S
CO4	S	М	S	М	Н

S – Strong; H – High; M – Medium; L – Low

Text Book

• Brijlal and Subrahmanyam. (2000). *Thermodynamics and Statistical Mechanics*. Sultan & Chand & Co Ltd, NewDelhi, (Units I – V).

Reference Books

- Kakani S.L. (2001). *Thermodynamics and Statistical Mechanics*. Raj Publications, Jaipur.
- Singhal S.S. (2013) *Heat, Thermodynamics & Statistical Physics*. Pragathi Pragason, Meerut, 1st edition.

Designed by Verified by HOD		Checked by CDC	Approved by COE
Name: Mr. T.Ponraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title : Bachelor of Science		nce
Course Code	18UPS204	Title	Batch :	2018-2021
Course Code:		Core IV: Physics Lab I	Semester	I & II
Hrs/Week:	3		Credits:	3

• To develop the skill to gain knowledge in Physics Lab I

Course Outcomes

K3	CO1	To recollect the basic principles taught
K4	CO2	To understand and apply the knowledge of theory to experiments
K5	CO3	To validate the experiment with theory

List of Experiments (Any fifteen):

- 1. Young's Modulus Non uniform Bending Pin and Microscope
- 2. Young's Modulus Non uniform Bending Koenig's method
- 3. Young's Modulus Cantilever Pin and Microscope
- 4. Young's Modulus Uniform Bending Scale and Telescope
- 5. Rigidity Modulus Static Torsion
- 6. Rigidity Modulus and Moment of Inertia Torsional Pendulum
- 7. Acceleration due to Gravity and Moment of Inertia Compound pendulum
- 8. Surface Tension and Interfacial Tension Drop weight method
- 9. Coefficient of Viscosity Stoke's method
- 10. Coefficient of Viscosity Searle's Viscometer
- 11. Verification of Laws of Transverse Vibrations and Frequency of a Fork Sonometer
- 12. Viscosity of a Liquid Capillary Flow Variable Pressure head
- 13. Comparison of Viscosities of Liquids and Radii of Capillary tubes
- 14. Frequency of a Tuning Fork and Density of Solid and Liquid Melde's String
- 15. Thermal Conductivity of a Bad Conductor Lee's Disc
- 16. Specific Heat Capacity of a Liquid Newton's Law of cooling
- 17. Specific Heat Capacity of a Liquid Joule's Calorimeter
- 18. Refractive Index of a Prism Spectrometer

Text Books

- Arora C.L. (2007). *Practical Physics*. S.Chand & Co, 19th Edition.
- Srinivasan M. L. Balasubramanian S. Ranganathan R. (2007). A Text book of Practical Physics. Sultan Chand. New Delhi.

Reference Books

- Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.
- Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers.
- Gupta S.L. Kumar V. (1999). Practical Physics. Pragati Prakashan, Meerut, 20th Edition.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Н
CO2	S	Н	S	Н	Н
CO3	Н	Н	S	Н	S

Designed by Verified by HOD		Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS3N1	Non-Major Elective I: Principles of Physics – I	Semester:	III
Hrs/Week:	1		Credits:	2

• To create awareness and to develop basic skills about environment, energy resources and its application

Course outcomes

K1	CO1	To acquire basic knowledge on renewable energy sources
K2	CO2	To get the idea about astrophysics and and the energy resources
K3	CO3	To implement the environmental impacts on the concepts of physics
K4	CO4	To effectively use energy sources based on the required applications

Syllabus

Unit	Content	Hrs
Ι	ATMOSPHERE Cosmic Rays - Ozone Layer - CFCs role in depletion - Solar Wind and Earth – Lightning (conducting medium to Earth) - Fragmentary Rainbows - Measurement of Rain - Rain colour of clouds-Reason for continous stream-Cloud bursts-Artificial Rain - <i>Rainbows (Size, doubleness)</i>	3
II	INTRODUCTION TO ENERGY SOURCES Conventional energy sources: Coal – Gas – Water – Agriculture and organic waste – Non conventional sources: Solar energy – Renewable energy resources	2
III	APPLICATIONS OF SOLAR ENERGY Introduction - Solar water heating- Space heating: Passive heating systems - Thermal storage wall – Roof storage - Solar cell principle – Solar cell modules - Applications of solar photovoltaic system	3
IV	SPACE Saturn rings - Measurement of temperature of planets and stars -Asteroids - Rotation of Earth - Shooting stars and comet s-Atmosphere of stellar bodies - Flat plane orbits of Planets	2
V	HOME APPLIANCES Microwave ovens - Pressure cooker - Richter scale - Humming sound in Tension wires - Curved Fan wings - Sodium vapour lamp in streets - Tube Lights: Role of chokes of Starter, Reason for no sharp shadows – Photocopier - <i>Thermostat</i>	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I,IV,V)
- Rai G. D. (2002). Non Conventional Sources of Energy. Khanna Publishers, NewDelhi, (Units II III)
- •

Reference Books

- Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.
- David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. John Wiley Publications. 6th Edition.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	S	S
CO2	S	Н	S	Н	М
CO3	М	S	S	М	S
CO4	S	S	S	Н	Н

Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:
	Verified by HOD Name: Dr.K.Kandaswamy Signature:	Verified by HODChecked by CDCName: Dr.K.KandaswamyName: Dr.M.DurairajuSignature:Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS3N2	Title	Batch:	2018- 2021
		Non-Major Elective I: Renewable Energy Sources	Semester:	III
Hrs/Week:	1		Credits:	2

• To develop the basic skills about various energy resources and its applications

Course outcomes

K1	CO1	To understand the Fundamental concept of various energy resources
K2	CO2	To implement the physical principles on the conventional and non-conventional sources to a
		device and its measurements.
K3	CO3	To harvest energy from various available sources

Unit	Content	Hrs			
Ι	GEOLOGY Age of Fossil - Measurement of depth of ocean - Lava from Volcano - Monsoons – Seebergs - Radiation from Granites and Marbles - Earth's Magnetic properties	3			
П	HYDROLOGY Coolness of mud pot water - Colour of Waterfall - Measurement of Quality of water in dams - Purity of Rain water - <i>Purity of mineral water in the Market</i>	3			
III	SOLAR RADIATION AND ITS MEASUREMENTS Solar Constant - Solar Radiation at the earth's surface: Beam and diffuse solar radiation – Air mass – Attenuation of beam radiation – Solar radiation geometry: Latitude of location – Declination – Hour angle – Angstrom compensation Pyrheliometer	3			
IV	SOLAR ENERGY COLLECTORS Physical principles of the conversion of solar radiation into heat - Flat plate liquid collector - Solar concentrators and receiver geometries (Basic types) - Advantages and disadvantages of concentrating collectors over flat – <i>plate type collectors</i>	2			
V	SOLAR ENERGY STORAGE Types of energy storage – Thermal storage - High temperature latent heat storage - Electrical storage - Storage in the form of fuel – Storage in the form of potential hydrogen energy	2			
Total contact hours					

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

Rai G. D. (2002). Non Conventional Sources of Energy. Khanna Publishers, NewDelhi, (Units I – V).

Reference Books

- Rai G. D. Solar Energy Utilization. Khanna Publishers, NewDelhi.
- Garg H.P. Prakash J. Solar Energy Fundamentals And Applications. Tata McGraw Hill Publications, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	S	S
CO2	S	Н	S	Н	М
CO3	S	S	S	М	S
CO4	S	S	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.S.Yogeshwari	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS305	Title	Batch:	2018-2021
		Core V: Electricity & Magnetism	Semester:	III
Hrs/Week:	5		Credits:	5

• To demonstrate the knowledge of electricity and magnetism in formulating and solving practical problems.

Course outcomes

K1	CO1	To acquire the knowledge on fundamental concepts of electric and magnetic field
K2	CO2	To understand the concept of electric field, potential and electromagnetic induction
K3	CO3	To implement the ideas for making the electrical devices such as capacitor, inductor,
		resistance, etc.,
K4	CO4	To evaluate the basic and advanced problems in the field of electromagnetic theory

Syllabus

Unit	Content	Hrs
Ι	ELECTRIC FIELD AND POTENTIAL Concept of charge - Electric Field (E) - Potential difference (V) - Relation between E and V - Equipotential surfaces - Poisson's and Laplace equations - Potential and field due to an electric dipole - Potential and field due to a quadrupole - Potential and field due to uniformly charged disc - Potential due to two concentric spherical shells of charge - Potential energy due to charge distribution.	13
П	CAPACITORS AND DIELECTRICS Capacitors - Parallel plate capacitor - Cylindrical capacitor - Spherical capacitor - Guard ring capacitor - Energy stored in a capacitor - Force of attraction between capacitor plates - Dielectric constant - Polar and nonpolar molecules - Polarisation of dielectric - Capacity of a parallel plate capacitor partially and completely filled with dielectric - Electric polarization vector P - Electric displacement vector D - Relation between D, E and P - Dielectric susceptibility and permitivity - Physical meaning of polarization - <i>Dielectric strength</i>	13
III	MAGNETOSTATICS AND MAGNETIC FIELD Magnetic effect of current - Lorentz force - Force on a current carrying wire - Magnetic flux - Gauss law in magnetostatics - Torque on a current carrying coil in uniform magnetic field - Potential energy of a current loop - Ballistic galvanometer - Deadbeat condition - Comparison of emfs and capacitances - Biot Savart law- field due to steady current in a long straight wire - Interaction between two long parallel wire carrying currents - Magnetic field along the axis of a circular coil - Field along the axis of a solenoid - Magnetic dipole - Ampere's law - Application to a current carrying conductor and solenoid	13
IV	ELECTROMAGNETIC INDUCTION Faraday's laws of Electromagnetic induction - Deduction of Faraday's laws from Lorentz's force - Self inductance - Calculation of self inductance for a solenoid - Energy stored in magnetic field - Mutual inductance - Energy stored in two interacting circuits - DC circuits : Simple RL circuit - Growth and decay of current - RC circuit - Charging and discharging of a condenser - Ideal LC circuit - Series LCR circuit - <i>Discharge of a condenser through inductance and resistance</i>	13

V I	Basic equations - Types of current - Vacuum displacement current - Maxwell's equations (No derivations) - Maxwell's equations in free space - Electromagnetic waves in free space - Electromagnetic waves in isotropic non - conducting media - Refractive index - Impedence of dielectric media - Energy density of electromagnetic wave - Poynting theorem (statement only) - Energy per unit volume.	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

• Tewari K.K. (2002). *Electricity And Magnetism*. Sultan chand and Co Ltd, New Delhi, (Units I - V).

Reference Books

- Tayal T.C. (2001). *Electricity And Magnetism*. Himalaya publication house, Mumbai.
- Murugesan R. (1998). *Electricity And Magnetism*. S.Chand & Company Ltd, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	М	Н
CO2	Н	М	S	Н	М
CO3	М	Н	Н	S	S
CO4	S	М	S	М	Н

D Checked by CDC	Approved by COE	
vamy Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	
	vamy Name: Dr.M.Durairaju Signature:	

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS4N3	Non-Major Elective II: Principles of Physics –II	Semester:	IV
Hrs/Week:	1		Credits:	2

• To develop the scientific interests on the portable electronic devices for day to life

Course outcomes

K1	CO1	To recollect the basic knowledge about portable devices
K2	CO2	To understand the central concepts of electric and optical devices
K3	CO3	To apply the basic physical phenomena on the operating features of scientific devices
K4	CO4	To figure out the applications of the physical quantities

Syllabus

Unit	Content	Hrs
Ι	Electric train – Leak proof battery –Hot air balloons – Remote control in TV –Superconductivity – <i>Nuclear reactors</i>	3
II	Photochromic glasses – Exhaust silencer – Optical fibers – Radar and Sonar – Fluorescent Lamps – Holograms – Touch screens	2
III	Earthquake measurement – Splitting of white light – GPS – Origin of Gravity – Use of Infrared spectroscopy – Static electricity – Three pin electric plugs – Electric line tester	2
IV	Refrigerants and their use in refrigerators - Frost formation - Air Cooler & Conditioner - Black box in Planes - Speech synthesizers - Lie detector - Pencil eraser - Bullet proof glass - Dry cleaning - Aeroplane not affected by lightning - Mosquito mats - Unleaded Petrol and two wheelers - <i>Oil with Petrol for two wheelers</i>	3
V	TFM on soap - Cell phones - Cordless phones - Tubeless tyres - Radial & Ordinary tyres- Non linear editing - Tear gas - Smell of Dust bin - Biological Weapon -Super Plasticizers in concrete - Super Computers - Computers Simulation -Artificial teeth – Aqualung - Purity of Honey - Breath analyzers	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• The Editor, (2006). *The Hindu Speaks on Scientific Facts*. Kasturi and Sons Ltd. Chennai, (Units I – V).

Reference Books

• Richard P. Feynman, Robert B. Leighton, Matthew Sands, (2008). *The Feynman Lecture on Physics*. Narosa Publishing House, New Delhi.

• David Halliday, Robert Resnick, Jearl Walker, (2000). *Fundamentals of Physics*. 6th Edition, John Wiley Publications.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	S	S
CO2	М	S	S	Н	S
CO3	S	Н	Н	S	S
CO4	S	S	S	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Ms.S.Yogeshwari Signature:	Name: Dr.K.Kandaswamy Signature:	Name: Dr.M.Durairaju Signature:	Name: Dr.R.Muthukumaran Signature:

Programme Code:	BSC	Programme Title:	Bachelor of So	cience
Course Code	18UPS406	Title	Batch:	2018-2021
Course Coue:		Core VI: Optics & Spectroscopy	Semester:	IV
Hrs/Week:	5		Credits:	5

• To understand the mechanism of energy transfer and to impart knowledge in electromagnetic spectrum

Course outcomes

K1	CO1	To gain knowledge about fundamental properties light, electromagnetic spectrum and splitting
		of spectral lines.
K2	CO2	To apply the energy transfer for absorption and emission spectra
K3	CO3	To determine structure of the molecules
K4	CO4	To evaluate bond angle and bond length etc.

Syllabus

Unit	Content	Hrs		
I	INTERFERENCE Characteristics of wave motion - Transverse and longitudinal wave motion - Theory of interference - Fresnel's biprism experiment - Determination of wavelength - Interference due to reflected light - Colours of thin films - Air wedge - Testing the planeness of surfaces - Newton's rings - Determination of wavelength and refractive index of a liquid	13		
П	DIFFRACTION Fresnel's explanation of rectilinear propagation of light - Zone plate - Zone plate as converging lens - Fresnel's diffraction at a circular aperture - Fraunhofer diffraction at a single slit - Theory of the plane transmission grating - Determination of wavelength	13		
III	POLARISATION Polarisation of transverse waves - Plane of polarization - Brewster's law and Brewster's window - Polarization by refraction - Double refraction - Principal section and principal plane - Nicol prism - Nicol prism as an analyser - Theory of circularly and elliptically polarised light - Optical activity - Fresnel's explanation of rotation - Specific rotation - <i>Laurent's half shade Polarimeter</i>	13		
IV	MOLECULAR SPECTRA Rotation of molecules - Rotational spectra of rigid diatomic molecule - Techniques and Instrumentation of Microwave Spectroscopy - Energy of a Vibrating diatomic molecule - Simple harmonic oscillator - Techniques and Instrumentation of Infrared Spectroscopy - Applications of Microwave & Infrared Spectroscopy (Basic ideas) - Raman effect and characteristics - Experimental study - Quantum theory of Raman effect	13		
V	ATOMIC & NUCLEAR SPECTRA Normal and Anomalous Zeeman effects - Experimental study of normal Zeeman effect - Lorentz Classical interpretation and Expression for the Zeeman shift - Quantum mechanical theory of Normal Zeeman effect - Paschen Back effect - Stark effect - NMR: Splitting of nuclear level in a magnetic field - Block diagram of NQR spectrometer - ESR: Interaction with magnetic field - Block diagram of ESR spectrometer	13		
Total contact hours				

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Subrahmanyam. N. Brijlal, Avathanulu M.N. (2008). A Textbook Of Optics. S.Chand and Co Ltd., New Delhi, (Units I III).
- Colin N .Banwell, Elaine M. Mc Cash, (2004). *Fundamentals Of Molecular Spectroscopy*. Tata McGraw-Hill, New Delhi, (Unit IV).
- Gupta S.L. Kumar V. Sharma R.C. (2001). *Elements Of Spectroscopy*. 16th edition, Pragati Prakashan, Meerut, (Unit V).

Reference Books

- Halliday, Resnick, (1994). Physics Part I & II. 4th Edition, Wiley Eastern Ltd, New Delhi.
- Jenkins, White, (1981). Fundamentals of Optics. 4th Edition, Mc Graw-Hill., New York.
- Manas Chanda, (1982). Atomic Structure And Chemical Bond. 2nd edition, Tata McGraw Hill, New Delhi.
- Gurdeep Chatwal, Sham Anand, (1987). *Spectroscopy*. 3rd edition, Himalaya Publishers, Mumbai.
- Subramanyam N. Brijlal, Waves And Oscillations. S.Chand & Co, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

 $\overline{S - Strong}; H - High; M - Medium; L - Low$

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code	18UPS407	Title	Batch:	2018-2021
Course Code:		Core VII: Physics Lab II	Semester:	III & IV
Hrs/Week:	3		Credits:	3

• To understand the theory with hands-on experience.

Course outcomes

K3	CO1	Able to understand optics and electromagnetic field
K4	CO2	Able to determine earth's constant M & H
K5	CO3	Understanding the principles behind every experiments

List of Experiments (Any fifteen):

- 1. Calibration of Voltmeter (Low & High Range) Potentiometer
- 2. Calibration of Ammeter(High Range) and Reduction Factor of T.G Potentiometer
- 3. Temperature Coefficient & Resistance of a coil of wire Potentiometer
- 4. E.M.F of a Thermocouple Potentiometer
- 5. Figure of merit Current & Voltage Sensitivity Ballistic Galvanometer
- 6. Comparison of Resistances Specific Resistance Ballistic Galvanometer
- 7. Absolute capacity of a Condenser Ballistic Galvanometer
- 8. Mutual Inductance of a Coil & Comparison of Mutual Inductance Ballistic Galvanometer
- 9. Determination of H Circular Coil carrying current –Vibration Magnetometer
- 10. Determination of M Field along the axis of a Circular coil carrying current
- 11. Thickness of a Wire Air wedge
- 12. Radius of curvature and Refractive index of a lens Newton's Rings
- 13. Refractive Index of a Liquid Spectrometer Hollow Prism
- 14. Refractive Index of a Prism Spectrometer i-d curve
- 15. Refractive Index of a Prism Spectrometer i-i' curve
- 16. Wavelength of different colours of Mercury spectrum and Dispersive power of a Grating Normal Incidence-Spectrometer
- 17. Refractive Index Spectrometer Small Angle Prism
- 18. Cauchy's Constants and Dispersive Power of a Prism Spectrometer

Text Book

• Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Dhanalakshmi A. Somasundaram S. Practical Physics. Apsara Publishers, Book II.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	М	S
CO2	М	S	Н	S	Н
CO3	М	S	S	S	S

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.N.Revathi	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS508	Title	Batch:	2018-2021
		Core VIII: Classical Dynamics	Semester:	V
Hrs/Week:	5		Credits:	5

Course Objective To understand the fundamental concepts in the dynamic of a particle and system of particles. •

Course outcomes

K1	CO1	To recollect the mechanics of a particle
K2	CO2	To define and demonstrate knowledge of the different formalisms in classical dynamics of a
		system
K3	CO3	To apply these formalisms to obtain equations of motion for simple systems
K4	CO4	To represent these formalisms for mechanical systems

Syllabus

Unit	Content	Hrs
Ι	MECHANICS OF A PARTICLE Linear momentum - Angular momentum-Work- Power- Kinetic energy Conservative forces- Potential energy- Conservation theorem for linear momentum Conservation theorem for angular momentum - Conservation theorem for energy - Motion of a particle under time dependent applied force –Motion of a free electron in oscillating field - Motion of a particle under damping forces - Motion of a particle under central force – Application to Projectile and simple harmonic vibrations	13
Π	MECHANICS OF SYSTEM OF PARTICLES Conservation theorem for a system of particle; Conservation theorem for linear momentum, angular momentum and energy - Constrained motion - Types of constraints with examples - Forces of constraints - Degrees of freedom - Generalized coordinates - Generalized notation for Displacement, Velocity, Acceleration, Momentum, Force and Potential - Limitations of Newton's Law	13
III	LAGRANGIAN FORMULATION Delta-Variation process - Hamilton's principle - Deduction of Lagrange's equations of motion from Hamilton's principle - Principle of virtual work - D'Alembert's principle - Deduction of Lagrange's equations by D'Alembert's principle for both conservative system and non-conservative system - Deduction of Hamilton's principle from D'Alembert's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation: Linear harmonic oscillator, Simple pendulum, <i>Compound pendulum</i> .	13
IV	HAMILTONIAN FORMULATION OF MECHANICS View points of the new development - Phase space and the motion of systems - Hamiltonian - Hamilton's canonical equations of motion - Cyclic coordinates - Physical significance of H - Advantages of Hamiltonian approach - Deduction of canonical equations from variational principle - Applications of Hamilton's equations of motion; Simple Pendulum, Compound pendulum, Linear harmonic oscillator.	13

V	HAMILTON - JACOBI FORMULATION Canonical or contact Transformations: Point Transformation, Canonical Transformation, Generating Function (Four forms) - Advantage of Canonical Transformations - Hamilton Jacobi method - Harmonic Oscillator problem by Hamilton Jacobi method - Hamilton Jacobi equation for Hamilton's Characteristic function.	13
Total contact hours		

• Italic font denotes self study

Text Books

- Gupta S.N. (1970). Classical Mechanics. Meenakshi Prakashan Publications, Meerut, (Unit I).
- Gupta, Kumar, Sharma, (2006). *Classical Mechanics*. 21st Edition, Pragati prakasan, Meerut, (Units II V).

Reference Books

• Herbert Goldstein, (1985). *Classical Mechanics*. 2nd Edition, Narosa publishing House, New Delhi.

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme code:	BSC	Programme Title :	Bachelor of Science	
		Title	Batch :	2018-2021
Course Code:	18UPS509	Core IX: Relativity & Quantum	Semester	V
		Mechanics		
Hrs/Week:	5		Credits:	5

• To develop the skill to gain knowledge in Relativity & Quantum Mechanics

Course Outcomes

K1	CO1	To keep in mind the concepts and the consequences of special and general theory of relativity
K2	CO2	To understand the basic concepts of Quantum theory and the wave properties of particles
K3	CO3	To apply the wave equation to solve simple problems
K4	CO4	To interpret the different types of quantum numbers

Syllabus

Unit	Content	Hrs	
Ι	SPECIAL THEORY OF RELATIVITY Galilean transformations and their limitations - Search for an absolute frame of reference: Michelson Morley experiment - Einstein's postulates and Lorentz transformations - Length contraction, Time dilation and Simultaneity – Variation of Mass with velocity - Mass-energy equivalence with experimental evidence	13	
Π	GENERAL THEORY OF RELATIVITY Relation between total energy, particle momentum and rest energy - Relativistic Doppler effect - Cerenkov radiation - World point and world line in Minkowski space - Inertial and gravitational mass - Principle of equivalence - Qualitative discussion of bending of light - <i>Precession of perihelion of mercury and gravitational red shift</i>	13	
Ш	QUANTUM MECHANICS WAVE PROPERTIES OF PARTICLES de-Broglie waves – The de-Broglie wavelength – Expression for group velocity – Experimental study of matter waves : Davisson and Germer's experiment - Heisenberg's Uncertainty principle and its illustrations: Gamma ray microscope & Diffraction of a beam of electrons by a slit - Postulates of wave mechanics - Properties of wave function	13	
IV	SCHRÖDINGERS EQUATION AND ITS APPLICATIONS Time dependent and Time independent forms - Particle in a box: Infinite square well potential - Potential step - The barrier penetration problem - Linear Harmonic oscillator - <i>The rigid rotator</i>	13	
v	QUANTUM THEORY OF HYDROGEN ATOM Schrödinger's equation for the Hydrogen atom - Separation of variables- Expression for the energy of the electron in the ground state – Significance of Quantum numbers : Principal Quantum number , Orbital Quantum number & Magnetic Quantum number - Electron probability density	13	
Total contact hours			

• Italic font denotes self study

Text Books

- Murugesan R. (2003). *Modern Physics*. 11th Edition, S.Chand, NewDelhi, (Units I IV).
- Arthur Beiser, (1997). *Concepts of Modern Physics*. 5th Edition, Tata McGraw Hill, NewDelhi, (Unit V).

Reference Books

- Atam P.Arya, (1974). *Elementary Modern Physics*. 1st Edition, Addison Wesley.
- Mathews, Venkatesan, (2002). A Text Book of Quantum Mechanics, Tata McGraw Hill Company Ltd, New Delhi.
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*, Himalaya Publishing Company, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	Н	S	Н	S
CO3	S	Н	Н	Н	S
CO4	S	Н	S	Н	Н

Mapping

Designed by Verified by HOD		Checked by CDC	Approved by COE	
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	BSC	Programme Title:	Bachelor of Science	
Course Code:	18UPS510	Title	Batch:	2018-2021
		Major Elective I:	Samaatam V	
		Basic Electronics & Circuit System	Semester:	v
Hrs/Week:	5		Credits:	5

• To understand the basic concepts of electronics and to implement the electronic circuits to various industrial applications.

Course outcomes

K1	CO1	To recollect the fundamental concepts and developments of electronics
K2	CO2	To understand the construction and operations of semiconductor devices
K3	CO3	To apply the knowledge of basic theorems in analog circuits
K4	CO4	To design electronic and optoelectronic circuits and interpret the output

Syllabus

Unit	Content	Hrs
Ι	DC CIRCUITS AND ALTERNATING CURRENTS DC Circuits: Current, Voltage, Resistance, Ohm's Law, Joule's Law, Resistors and Batteries - Series and Parallel Circuits - Networks - Kirchoff Rules - Thevenin's Theorem - Norton's Theorem - Maximum power transfer theorem – Proportional Voltage and Current formula - Ammeter, Voltmeter, Ohmmeter and Multimeter (Basic ideas) - Alternating currents: Frequency, Amplitude and Phase - RMS value and Power - Capacitance and Inductance - <i>Transformer</i>	13
II	SEMICONDUCTOR DEVICES AND CIRCUITS Semiconductor and Energy bands - Doped Semiconductor - PN Junction diode and Zener diode - Characteristics - Half wave, Full wave and Bridge rectifiers – Capacitance filter-Two pin regulated power supply - Voltage doublers - Clippers and Clampers - Transistor and action - Common base and Common emitter Configurations - Relations between α and β - Load line and Operating point - Stability - Voltage divider Self bias - JFET and its characteristics	13
Ш	AMPLIFIERS & OSCILLATORS Principle of amplification - Classification of amplifiers - Common emitter single stage amplifier and frequency response - Multistage amplifiers (Basic ideas) - Concept of feedback and Effect of negative feed back (qualitative) - Barkhausen criterion - Basic Oscillatory circuit and Classification of oscillators - Hartley, Colpitts and Phase shift Oscillators (Circuit operations)	13
IV	OPERATIONAL AMPLIFIER Typical stages of an Op Amp - Ideal Op Amp and characteristics - Input offset voltage, Offset current, Bias current and Slew rate (Definitions) - Inverting Op Amp - Noninverting Op Amp - Differential Op Amp - Scale and Phase changers - Adder and Averager – Subtractor, Differentiator and Integrator	13
V	OPTOELECTRONIC DEVICES Optical radiation - Flux and illumination - Structure, variation of resistance & speed response of a Photo detector - Photovoltaic cells - Photodiodes - Phototransistors - Light beam detector - Electronic slave flash control - Window detector - LED: Bar graph display, drivers and LED arrays - Optically coupled isolator (Basic ideas)	13
	Total contact hours	65

Seminar, Assignment, Experience discussion, PPT

Text Books

- James J.Brophy, (1990). *Basic Electronics for Scientists*. 5th Edition, McGraw Hill Publishing Company, New York, (Unit I).
- Sadasiva Biswal, (2001). *Basic Electronics* (*Vol.I*). Atlantic Publishers and Distributors, (Units II &III).
- Swaminathan Mathu, (1985). *Electronics: Circuits and Systems*. 1stEdition, Howard W.Sams & Co., Inc, New York, (Units IV&V).

Reference Books

- Narayana Rao B.V., (1994). *Principles of Electronics (Vol. I & II)*. Wiley Eastern Limited & New Age International Limited, New York.
- Norman Lurch, *Fundamentals of Electronics*. 3rd Edition, John Wiley & Sons.
- Ramakant A.Gayakwad, (1997) *Op-Amps & Linear Integrated Circuits*. 3rd Edition, Prentice- Hall of India, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	Н	S	Н	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS511	Major Elective II: Digital Principles and its applications	Semester:	V
Hrs/Week:	5		Credits:	5

• To study the number system, Logic circuits and its application and to understand the architecture and instruction set of 8085 microprocessor

Course outcomes

K2	CO1	Understanding the operations of BCD numbers and memory allocation in computers
K5	CO2	Develop effective problem solving abilities
K4	CO3	Analyze electronic circuits
K3	CO4	Apply the concept of basic electronic devices to design various circuits

Syllabus

Unit	Content	Hrs
Ι	NUMBER SYSTEMS AND CODES Binary, octal, decimal, hexadecimal number system: Addition, Subtraction, Multiplication & Division – Conversion of number systems - one's complement and two's complement subtraction - BCD number system, Gray code, gray to binary and binary to gray conversion, Excess 3 code – ASCII codes	13
II	LOGIC GATES OR, AND and NOT gates - NAND and NOR gates - Universal building blocks - XOR and XNOR gates - Demorgan's theorems - Laws and theorems of Boolean algebra - Simplification of Boolean expressions - Karnaugh map - Pairs, quads and octets - Sum of product method and simplifications - Don't care conditions - <i>Product of sum method and simplifications</i>	13
III	ARITHMETIC AND DATA PROCESSING CIRCUITS Half and full adders - Half and full subtractors - Parallel binary adder and subtractor - Multiplexers - Demultiplexers - 1 - of - 16 decoder - BCD to decimal decoder - Seven segment decoders - Encoders	13
IV	FLIP FLOPS, REGISTERS AND COUNTERS RS Flip Flop - D Flip Flop - Edge triggering - JK and Master slave Flip Flop - Serial in serial out - <i>Serial in parallel out</i> - Parallel in serial out - Parallel in parallel out shift register -Asynchronous Mod 8 up and down counters - Decoding gates - Synchronous Mod 8 up and down counters - Mod 3, Mod 5, and Mod 10 counters - Presettable counter - Digital clock	13
V	MICROPROCESSOR ARCHITECTURE AND PROGRAMMING Organization of a Microcomputer system – Architecture of the 8085 - Microprocessor instruction set and computer languages - Overview of the 8085 instruction set: Data transfer, Arithmetical, Logical, Branch, Stack, I/O & Machine control groups - Addressing modes - Programming the 8085: The programming process - The stack and subroutines - Simple programming examples	13
	Total contact hours	65

• Italic font denotes self study

Text Books

- Malvino A.P, Leach D.P. (2000). *Digital Principles and Applications*. 4th Edition, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, (Units I IV).
- Aditya P.Mathur, (1997). *Introduction To Microprocessor*. 3rd Edition, Tata McGrawHill, New Delhi, (Units V).

Reference Books

• Ramesh S.Gaonkar, (1997). *Microprocessor Architecture, Programming And Applications With The 8085.* 3rd Edition, Penram International Publishing, India.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	М	М	L
CO2	М	S	S	S	Н
CO3	М	S	S	S	S
CO4	М	М	S	М	М

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.N.Revathi	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS5S1	Skill based Elective I: Mechanical Measurements	Semester:	V
Hrs/Week:	1		Credits:	2

• To enrich the basic foundation and inspire interest for the knowledge in Mechanical measurements

Course outcomes

K1	CO1	To understand the operational features, limitations and difficulties inherent in the instruments
K2	CO2	To apply the basic principle to develop the mechanical measurement systems
K3	CO3	To implement the operation and construction to infer the instrument characteristics
K4	CO4	To evaluate the accuracy, error and calibration of an instrument

Syllabus

Unit	Content	Hrs		
Ι	INSTRUMENT CHARACTERISTICS STATIC TERMS AND CHARACTERISTICS: Range and span - Accuracy, error and correction – Calibration - Hysteresis - Dead zone – Drift – Sensitivity – Stability - Linearity - Back lash – Stiction DYNAMIC TERMS AND CHARACTERISTICS: Speed of response and measuring lag - Fidelity and dynamic error – Overshoot – Dead time and Dead zone - <i>Frequency response</i>	3		
П	TRANSDUCERS Transducer description - Variable resistance transducer - Capacitance transducer - Photoelectric transducer - Piezo electric transducer	3		
III	PRESSURE MEASUREMENT Terms - Piezometer - U tube double column monometer – Bourdon gauge - McLeod gauge - CRO for varying pressure measurement	3		
IV	FLOW MEASUREMENT Nature of flow - Cup and Vane anemometers - Hotwire anemometer - Ultrasonic flow meter - Thermal flow meter - <i>Shadograph</i>	2		
V	MEASUREMENT OF DENSITY AND HUMIDITY Hydrometer – Density measurement using LVDT – Electrical Hygrometers – Sling Psychrometer	2		
	Total contact hours			

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Kumar, D. S. (1997). *Mechanical Measurements And Control*. Metropolitan, Third Edition, New York, (Units I IV).
- Sawhney A. K. Puneet Sawhney, (2004). A Course in Mechanical Measurements And Instrumentation. Dhanpat Rai & Co, 12th Edition, New Delhi, (Unit – V).

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	S	Н
CO2	Н	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr. P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title: Bachelor of Science		cience
		Title	Batch:	2018-2021
Course Code:	18UPS5S2	Skill based Elective I:	Semester: V	V
		Fundamentals of Biophysics		v
Hrs/Week:	1		Credits:	2

• To develop the basic knowledge about Biophysics and its Applications

Course outcomes

K1	CO1	To understand the physical principles of the biological phenomena.
K2	CO2	To apply the separation and physico-chemical techniques to study biological structure
K3	CO3	To implement the characteristics of a biological system using the concept of physics and
		chemistry
K4	CO4	To evaluate the physical and chemical properties of biological applications

Syllabus

Unit	Content	Hrs
Ι	LAWS OF PHYSICS AND CHEMISTRY Quantum Mechanics – Electronic structure of Atom – Molecular orbitals and Covalent bonds – Molecular Interactions – Strong and Weak interaction – Thermodynamics – Entropy and Enthalpy – <i>Free energy of a</i> <i>system</i>	3
П	MOLECULAR ALPHABETS OF LIFE Introduction to the molecular structure and function of Proteins, Nucleic acids, Carbohydrates and Lipids.	2
III	BIOMOLECULAR SEPARATION TECHNIQUES Chromatography: Column, Thin Layer, Ion exchange, Molecular exclusion and Affinity Chromatography – Electrophoresis – Gel Electrophoresis.	2
IV	PHYSIOCHEMICAL TECHNIQUES Ultra centrifugation – Viscosity – Light scattering measurements – Different types of Light microscopy – Basics of TEM, SEM – Introduction to X-ray crystallography and NMR.	3
V	BIOMECHANICS AND NEURO-BIOPHYSICS Mechanical properties of muscles – Biomechanics of cardiovascular system – The nervous system – Physics of membrane potentials – Sensory mechanisms – The Eye – <i>Physical aspects of hearing</i> .	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Book

• Vasantha Pattabhi, Gautham N. (2002). Biophysics Narosa Publishing House. New Delhi,

(Units I-V).

Reference Book

• Rodney Cotterill, *Biophysics An Introduction*. John Wiley &Sons Ltd, England.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	М	S	Н
CO2	S	Н	S	Н	М
CO3	М	Н	Н	Н	S
CO4	S	S	М	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr. P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	BSC	Programme Title : Bachelor of Science		ence
Course Code:	18 UPS 3A1	TitleBatch :2		2018-2021
		Allied:Physics For Mathematics & Chemistry- I	Semester	III
Hrs/Week:	5		Credits:	4

• To develop the basic concepts of physics applied in chemistry and mathematics Course outcomes

K 1	CO1	To understand the basic concepts of physics in electricity, semiconductors, optics and digital
		electronics
K2	CO2	To differentiate analog and digital systems
K3	CO3	To gain an enhanced knowledge on number systems and logical expressions
K4	CO4	To convert the expressions into useful circuits

Unit	Content	Hrs
I	ELECTRICITY AND MAGNETISM Electric field, Intensity & Potential - Potential due to a charged conducting sphere - Capacitance - Parallel plate capacitor - Energy stored in a charged capacitor - Kirchoff's law - Wheatstone's bridge - Potentiometer - Measurement of Resistance & EMF - Calibration of Ammeter & Voltmeter - <i>Biot Savart law</i> - Field along the axis of a circular coil - Determination of M & H - Electromagnetic induction	13
Ш	WAVE OPTICS Young's double slit experiment - Coherent sources - Theory of interference fringes - Interference due to reflected light (Thin films) - Colour of thin films - Newton's rings - Determination of λ and μ - Theory of plane transmission grating - Determination of λ of Mercury light - Plane polarized light - Nicol prism as Analyzer and Polarizer - Optical activity - Laurent's half shade Polarimeter	13
III	SEMICONDUCTOR PHYSICS Semiconductor - Intrinsic and Extrinsic semiconductors - Junction diode and Zener diode characteristics - Half & Full wave Rectifiers - Regulated power supply - Transistor and its action - Common base and common emitter configurations - Relations between α and β	13
IV	NUMBER SYSTEMS Binary, octal, decimal, hexadecimal number system: Addition, Subtraction, Multiplication & Division – Conversion of number systems - one's complement and two's complement subtraction - BCD number system, Gray code, gray to binary and binary to gray conversion, Excess 3 code – <i>ASCII codes</i>	13
V	LOGIC GATES AND CIRCUITS OR, AND & NOT gates using Discrete components and ICs - NOR & NAND gates - Universal building blocks - Demorgan's theorems - XOR & XNOR gates - Laws and theorems of Boolean algebra - Simplification of Boolean expression - Half & full adders - Half & full subtractors	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Text Books

- Murugeshan R, (2008). Electricity and Magnetism, S.Chand & Company Ltd, New Delhi, (Unit I).
- Brijlal and Subramaniam, (1999). A Text Books Of Optics. S.Chand & Company Ltd, New Delhi, (Unit II).
- Theraja B.L, (1998). Basic Electronics Solid state. S.Chand & Company Ltd, New Delhi, (Unit III).
- Malvino and Leech, (1986). *Digital Principles and Applications*. Tata Mc Graw Hill Publishing Company, New Delhi (Units IV & V).

Reference Books

- Brijlal and Subramaniam, (1987). Electricity and Magnetism, S.Chand & Company Ltd, New Delhi.
- Sadasiva Biswal, (2001). *Basic Electronics*. Atlantic Publishers and Distributors.
- Narayana Rao B.V. (1994). *Principles of Electronics*. Wiley Eatern Limited New Age International Limited.

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01 \	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	S	S	S	М	S
CO4	М	Н	Н	L	Н

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by Verified by HOD		Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	ame Title: Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS4A2	Allied: Physics For Mathematics & Chemistry- II	Semester:	IV
Hrs/Week:	5		Credits:	4

Course Objective

• To develop basic knowledge in the field of fiber optics, atomic, nuclear and quantum physics

Course outcomes

K1	CO1	To understand the structure of atom and Nucleus
K2	CO2	Gain a basic knowledge of Quantum physics and special theory of relativity
K3	CO3	To get an insight in to the field of laser and fiber optics
K4	CO4	To appreciate the beauty of physics

Syllabus

Unit	Content	Hrs
I	ATOMIC PHYSICS Discharge of electricity through rarified gases - Cathode rays - Properties - Determination of charge of electron by Millikan's oil drop method -Positive rays - Thomson parabola method - Rutherford atom model - Bohr atom model - Hydrogen spectral series - Critical potentials - Sommerfield atom model - Vector atom model (qualitative) - <i>Pauli's exclusion principle</i>	13
Π	NUCLEAR PHYSICS Basic properties of nucleus - Binding energy, Mass defect and Nuclear force - Liquid drop model - Law of radioactivity - Half life and Mean life - Radioactive dating - α , β and γ decay process (Basic ideas) - Nuclear fission - Chain reaction & Atom bomb - Nuclear reactors - Nuclear fusion & Sources of stellar energy - Thermonuclear reactions & Hydrogen bomb	13
III	QUANTUM PHYSICS Black body radiation and Planck's hypothesis - Photoelectric phenomena and Experimental investigations - Einstein's equation and Millikan's experiment - De Broglie's concept of Matter waves and De Broglie wavelength – G.P.Thomson Experiment - Uncertainty Principle - Postulates of wave mechanics - Wave function and significance - Schrodinger equation (one dimensional) - Eigen values and Eigen functions	13
IV	SPECIAL THEORY OF RELATIVITY Frames of reference - Newtonian Relativity - Michelson Morley experiment and explanation for negative results - Postulates of special theory of relativity - Lorentz transformation - Time dilation - Length contraction - Addition of velocities - Variation of mass with velocity - Equivalence of mass and energy	13
V	 LASER OPTICS Concept of energy levels - Einstein's coefficients (qualitative) -Population inversion - Pumping methods - Essential elements and Action of laser system - Characteristics - Holography and Lasers in medicine (Basic ideas) FIBER OPTICS Construction and types of optical fiber - Critical angle - Propagation of light 	13

through optical fiber - Optical fiber configurations - Acceptance angle,	
Acceptance cone and Numerical aperture - Fiber optic communication system	
Total contact hours	65
Italic font denotes self study	

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Murugesan R. (2001). Modern Physics. S.Chand & Company Ltd, New Delhi, (Units I IV).
- Brij Lal Subramanyam N. and Avadhanulu M.N, "A Text Book of Optics". S.Chand & Company Ltd, New Delhi, (Unit V)

Reference Books

- Arthur Beiser, (2003). Concepts of *Modern Physics*. Addison Wesley Pvt Ltd.
- Raymond.A.Serway, (2007). *Physics For Scientists And Engineers*. Saunders College Publishing (Harcourt Brace College Publishers).
- Pedrotti L. & Pedrotti S. (2008). Introduction To Optics. Prentice Hall international Edition, New Delhi..
- Wayne Tomasi and Vincent F.Alisouskas. (1988). *Telecommunications*. Prentice Hall International, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	Н	S	S	М	М
C04	М	Н	Н	L	Н

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	BSC	Programme Title:	Bachelor of Science	
		Title	Batch:	2018-2021
Course Code:	18UPS4A3	Allied:Physics Lab For Mathematics & Chemistry	Semester:	III & IV
Hrs/Week:	3		Credits:	4

• To enable the student to gain practical knowledge

Course Outcomes

К3	C01	To gain an in-depth knowledge and understanding of the functions of Potentiometer
		and Ballistic galvanometer
K4	CO2	To apply the concepts of physics on measurements and instrumentations of physical
		experiments
K5	CO3	To acquire enhanced practical skills in digital measurements

List of Experiments:

- 1. Refractive index of a Prism Spectrometer
- 2. Refractive index of a Lens Newton's Rings
- 3. Specific resistance of a Wire Potentiometer
- 4. Horizontal Component of Earth's Magnetic Field (H) Field along the axis of a Circular coil carrying current
- 5. Characteristics of PN Junction Diode
- 6. Basic Logic Gates Discrete Components & ICs
- 7. Demorgan's Theorems and Problem solving in Boolean Algebra through Logic Circuits
- 8. Half & Full Adder
- 9. NAND as Universal building block
- 10. Refractive index of a Prism i d Curve Spectrometer
- 11. Wavelength of Mercury source Grating Normal incidence Spectrometer
- 12. Calibration of Low range Voltmeter and Ammeter Potentiometer
- 13. Magnetic Moment (M) Field along the axis of a Circular coil carrying current
- 14. Characteristics of Zener Diode
- 15. Rectifiers & Filters
- 16. Two pin Regulated Power supply
- 17. Half & Full Subtractor
- 18. NOR as Universal building block.

Text Book

• Govindarajan S.R. Sundarajan S. (1959). Practical Physics. Roc house & sons Pvt Ltd.

Reference Book

• Paul B.Zbar, Malvino, Miller, (1983). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.

Mapping

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	Н	S	S	М	М

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature: