P.G. DEPARTMENT OF COMPUTER SCIENCE (SF)

Nallamuthu Gounder Mahalingam College

(Autonomous)

(An ISO 9001:2008 Certified Institution)

Re-Accredited with 'A' Grade by NAAC

Pollachi-642001

SYLLABUS

M. Sc. COMPUTER SCIENCE (SF)

BATCH 2018-2020

Scheme of Examination

	I SEMESTER							
			D	Examination				
Part	Subject Code	Title of the Paper	in Hours per week	Hours	CIA	ESE	Total	Credits
	18PCS101	Android Programming	5	3	25	75	100	4
	18PCS102Design and Analysis of Computer Algorithms		5	3	25	75	100	4
	18PCS103 Information Security		5	3	25	75	100	4
	18PCS1E1	Elective-I: Data Mining and Warehousing	5	3	25	75	100	5
	18PCS104 Programming Lab - I: Android Programming		5	3	40	60	100	4
	18PCS105	Programming Lab –II: Design and Analysis of Computer Algorithms	5	3	40	60	100	4
		II SF	EMESTER					
	18PCS206	Python Programming	4	3	25	75	100	4
тт	18PCS207	Advanced Networks	4	3	25	75	100	4
111	18PCS208	Big Data Analytics	4	3	25	75	100	4
	18PCS2E1Elective – II : Computing Technologies		5	3	25	75	100	5
IV	V 18PCS2N1/ 18PCS2N2 Non Major Elective: Multimedia Packages Lab /Web Designing Lab		1	3	-	100	100	2
	18PCS209 Programming Lab -III : Python Programming		4	3	40	60	100	4
III	III Programming Lab-IV : 18PCS210 Networks		4	3	40	60	100	4
III	18PCS211	Programming Lab-V : Unified Modeling Language and R Tool	3	3	40	60	100	4

Part	Subject	Title of the paper	Duration		Examir	nation		Credits
	Code		in Hrs per week	Hours	CIA	ESE	Total	
	18PCS312 J2EE Technologies		4	3	25	75	100	4
III	18PCS313	Digital Image Processing	5	3	25	75	100	5
	18PCS314	3PCS314 Internet of Things		3	25	75	100	4
	18PCS3E1	Elective-III: Soft Computing	5	3	25	75	100	5
	18PCS315	Programming Lab-VI : J2EE Technologies	5	3	40	60	100	4
	18PCS316	Programming Lab-VII: Digital Image Processing using MATLAB	5	3	40	60	100	4
	IV SEMESTER							
III	18PCS417	Industrial Project Work and Viva voce (Individual)	-	-	-	-	200	8
TOTAL MARKS					2200	90		

III SEMESTER

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks

(i)Test- I & II and ESE:

Knowledge Level	Section	Marks	Description	Total
K1	A(Answer all)	10x01=10	MCQ/Define	75
K2	B (Either Or pattern)	05x05=25	Short Answers	15
K3& K4	C (Answer 4 out of 6)	04x10=40	Descriptive/ Detailed	

2. Practical Examinations:

Knowledge Leve	Section	Marks	Total
К3	Practical & Record work	60	
K4		40	100
K5		40	

Note:

1. Question paper pattern for Non-Major Elective(NME) Practical Paper (Maximum Marks: 100 Marks)

Two questions from Computer Science Practical - 80 marks

Marks for Record

- 20 marks

Components of Continuous Assessment

Components		Calculation	CIA Total
Test 1	75	75 + 75 + 25	
Test 2	75	<u>13+13+23</u> 7	25
Assignment/Seminar	25		

Programme Outcomes

- **PO1**. Develop core competence in computer science and prepare the students to take up a career in the IT industry as well as in research and development.
- **PO2**. Ability to inculcate various thrust areas of computer science with sound knowledge of theory and hands-on practical skills.

- **PSO1:** Ability to design, implement and evaluate a computer based systems, process, component or program to meet desired needs.
- **PSO2:** Ability to analyze advantages and disadvantages of different computer science methods within professionally and academically complex areas to compete with new variants of acquired methods.
- **PSO3:** Ability to employ in industry, government or entrepreneurial endeavors to demonstrate professional advancement through significant technical achievements and expanded leadership responsibilities.
- **PSO4:** To provide foundation for research into the theory and practice of programming and design of computer based systems.
- **PSO5:** To present knowledge, experience, reasoning methods and design and implementation techniques that are robust and forward looking.

SEMESTER I

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Co	omputer Science
Course Code:	18PCS101	Title	Batch :	2018-2020
		Android Programming	Semester	Ι
Hrs/Week:	5		Credits:	04

Course Objective

On successful completion of the course, the students should have a good understanding on the Mobile Environment and acquired mobile application development skills with Android

Course Outcomes (CO)

		CONTENTS	Hours
K4	CO4	To analyze the functions of various sensors.	
		by using SQLite database	
КЗ	CO3	To deploy a basic application that acts as a working example with various con	cepts
		various controls, fragments and examples.	
K2	CO2	To get an idea of the UI - components, event handling, and screen orienta	ation,
		configuration files, intents, and activities and layouts	
K1	C01	To keep in mind about the operation of the application, application lifed	cycle,

UNIT I

Android: Introduction – Android's Fundamental Components – Exploring the Structure of an Android Application – Examining the Application Life Cycle. Introduction to Android Application Architecture: Exploring a simple Android Application – Defining UI through Layout Files – Specifying Comments in Layout Files – Adding Views and View groups in Layout Files – Specifying Control Properties in Layout Files – Indicating View Group Properties – Controlling Width and Height of a Control – Introducing Resources and Backgrounds – Working with Text Controls in the Layout File – Working with Auto generated IDs for Controls – Loading the Layout File into an Activity – Gathering Controls – Placing the Files in the Android Project – Android Activity Life Cycle – Resources.

UNIT II

User Interface Development and Controls: UI Development in Android - Building a UI Completely in Code - Building a UI Completely in XML - *Building a UI in XML with Code*. Android's Common Controls: Text Controls – Button Controls – The ImageView Control – Date and Time Controls – The MapView Control. Adapters and List Controls: SimpleCursorAdapter – ArrayAdapter – The Basic List Control ListView – The GridView Control – The Spinner Control – The Gallery Control – Styles and Themes – Layout Managers - Menus and Action Bars

Unit III

Fragments:Introduction-Use of Fragments-The Structure of Fragment-Sample Program of
Fragment .Broadcast Receivers-Coding a Simple Receiver-Registering a Receiver-Multiple
Receivers. SQLite:Saving State using SQLite-SQLite Packages and Classes_Creating an
SQLite Database-Migrating a Database-Inserting Rows-Deleting Rows-
Reading Rows-
Exploring Databases on the Emulator and available devices-Content Providers13UNIT IV
Touch Screens and Sensors: Understanding Motion Events – The Motion Event Object –13

Touch Screens and Sensors:Understanding Motion Events – The Motion Event Object –
Recycling Motion Events – Using Velocity Tracker – Multi-touch – Gestures.13Drag and Drop:Exploring Drag and Drop – Basics of Drag and Drop in 3.0+ – Drag-and-

M.Sc Computer Science Effective from the year 2018 onwards	1
Drop Example Application. Sensors: Introduction – Detecting Sensors – Getting Sensor	
Events – Interpreting Sensor Data.	
UNIT V	
Application Security and Deployment: Security and Permissions – Understanding the	13
Android Security Model – Performing Runtime Security Checks – Deploying the Application:	13
Becoming a Publisher – Preparing the Application for Sale – Uploading the Application.	
Total Hours	65
*Italicized texts are for self study	
Power point Presentations, Seminar, Assignment, Activity, Case study	
Text Books	
1. Dave MacLean, Satya Komatineni, Grant Allen, 2015, "Pro Android 5", Apress Publications.	
2. Wei-Meng-Lee, 2012, "Beginning Android Tablet Application Development", Wiley Publica	tions
Reference Books	
1. Barry Burd, 2016, "Android Application Development – All-in-one for Dummies", 2 nd F	Edition,
Wiley India.	
2. Lauren Darcey, Shane Conder, 2013, "Sams Teach Yourself Android Application Development	nt in
24 hours", 2nd edition, Pearson Education.	
3. Paul Deitel, Harvey Deitel, Alexander Wald, 2016, "Android 6 for Programmers – An App-dr	iven
Approach", 3rd edition, Pearson education.	

4. Jerome (J. F) DiMarzio, 2015, "Android – A Programmer's Guide", McGraw Hill Education, 8th reprint.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	S	S	S
CO2	М	М	Н	S	Н
CO3	М	Н	S	S	М
CO4	М	Н	М	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.Vallinayagam	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS102	Title	Batch :	2018-2020
		Design and Analysis of	Semester	Ι
Hrs/Week:	5	Computer Algorithms	Credits:	04

Course Objective

On successful completion of the course the students should understand the various design and analysis of various data structure algorithms.

K1	C01	To remember worst case running times of algorithms using asymptotic analysis
K2	CO2	To understand divide-and-conquer paradigm, dynamic-programming paradigm, greedy paradigm and branch and bound strategies and apply them for the appropriate problems
К3	CO3	To deploy different data structures
K4	CO4	To analyze major graph algorithms and to employ graphs to model engineering problems

CONTENTS	Hours
UNIT I Introduction: algorithm definition and specification – performance analysis –Elementary Data structures:- <i>stacks and queues – trees –</i> dictionaries – priority queues – sets and disjoint set union – graphs – Basic traversal and search techniques – Techniques for Binary Tree – Techniques for Graphs: Breadth First Search and Traversal, Depth First Search and Traversal.	13
UNIT II Divide – and – conquer: - General method – binary search – merge sort – quick sort –The Greedy method: - General method – knapsack problem – minimum cost spanning tree –single source shortest path.	13
UNIT III Dynamic Programming: General method – multistage graphs – all pair shortest path –optimal binary search trees – 0/1 Knapsack – <i>traveling salesman problem</i> – flow shop scheduling.	13
UNIT IV Backtracking: General method – 8-Queens problem – sum of subsets – graph coloring – Hamiltonian cycles – knapsack problem.	13
UNIT V Branch and bound: The method – Least Cost (LC) Search – The 15 puzzle: An Example – Control abstractions for LC Search – Bounding – FIFO Branch and Bound – LC Branch and Bound – 0/1 Knapsack problem – LC Branch and Bound solution – FIFO Branch and Bound solution – Traveling salesperson.	13
Total Hours	65
* <i>Italicized</i> texts are for self study Power point Presentations, Seminar , Assignment, Brain storming	

Text Books

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2008, "Computer Algorithms", 2nd Edition, Galgotia Publications

Reference Books

- 1. Ellis Horrowitz, Sartaj Sahni, 2015, "Fundamentals of data structures", Reprinted Edition, Galgotia Publications
- 2. Alfred V.Aho, John E.Hopcroft & Jeffery D Ullman, 2009, "Data structures and Algorithms", Reprinted

Edition, PHI learning pvt Ltd

3. Adam Drozdek, 2012, "Data Structures and Algorithms in C++", 4th Edition, Vikas publishing house, NewDelhi

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	Н
CO2	Н	М	М	S	S
CO3	S	Н	S	М	М
CO4	М	S	М	Н	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: N. Arul Kumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS103	Title	Batch :	2018-2020
		Information Security	Semester	Ι
Hrs/Week:	5		Credits:	04

Course Objective

On successful completion of the course the students should understand the Technology Infrastructure, Electronic Commerce Software and Business Strategies and understand the fundamentals of security and how it attacks.

K1	C01	To recollect the role of the major types of information systems in a business environment and their relationship to each other
К2	CO2	To deduce the impact of the Internet and Internet technology on business electronic
		commerce and electronic business
K3	CO3	To deploy an understanding of E-adverting, E-supply chain management and
		E-strategies
K4	CO4	To evaluate the understanding of security measures in network and web

CONTENTS	Hours
UNIT I	
Introduction to Electronic Commerce: Electronic Commerce– Business Models, Revenue Models, and Business Processes – Economic Forces and Electronic Commerce – Identifying Electronic Commerce Opportunities – International Nature of Electronic Commerce. Technology Infrastructure : The Internet and the World Wide Web– <i>Internet and World Wide Web</i> – Packet – Switched Networks – Internet Protocols – Markup Languages and the Web – Intranets and Extranets – Internet Connection Options - Internet2 and The Semantic Web.	13
UNIT II	
 E-Marketing: Online Marketing – E-Advertising-E-branding-E-Security: information system security-security on the internet – E-Payment Systems: Digital token based e-payment systems- classification of new payment systems-check payment systems on the internet. E-Customer Relationship Management: customer relationship management-typical business touches points. E-Supply Chain Management: smart chains-smarter gains-E-supply chain components-e-supply chain architecture. 	13
 UNIT III E-Strategy: Changes in technology-definitions of knowledge-importance of knowledge management-stages-seven dimensions-value chain and e-strategy. Mobile Commerce: Technologies for Mobile Commerce– WAP Programming Model – Wireless Technologies – Different Generations in Wireless Communication – Security issues Pertaining to Cellular Technology –M-Commerce in India. 	13
UNIT IV Network security: authentication applications: Kerberos –x.509 authentication service- E-mail Security: Pretty Good Privacy, S/MIME (Secure/Multipurpose Mail Extension). IP security.	13
UNIT V System & Web Security: Malicious Software: Viruses and Related threats, Virus counter	13

measures, distributed Denial of service attacks. Firewalls: Firewall, Firewall Design				
Principles, Trusted Systems.				
Web Security: Web Security Considerations, Secure socket layers, Transport Layer				
Security-Secure Electronic Transaction.				
Total Contact Hrs				
*Italicized texts are for self study				
Power point Presentations, Seminar , Assignment				
Tout Doolg				

Text Books

- 1. Gary P. Schneider, 2012, "E-Commerce Strategy, Technology and Implementation", 9th Edition, CENGAGE Learning India Private Limited (Unit I).
- 2. P.T. JOSEPH, 2013, "E-Commerce an Indian Perspective", Fourth Edition, Prentice Hall of India (Unit II & Unit III).
- 3. William Stalling, 2006, "Cryptography and Network Security Principle and Practice", 4rd Edition, Pearson Publications (Unit IV&V).

Reference Books

- 1. Mike Papazologn, 2008, "E-Business, Organizational and Technical Foundations", Wiley India Pvt Ltd.,
- 2. Elias M. Awad, 2008, "Electronic Commerce", Prentice-Hall of India.
- 3. Panko Stalling , 2000, "Cryptography and Network Security Principle and Practice", 3rd Edition
- 4. Bruce Schneir, 2000, "Applied Cryptography", CRC Press.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	S	М	Н	S	L
CO3	Н	Н	S	М	М
CO4	М	S	Н	Н	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.S. Shanthi	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE - I

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS1E1	Title	Batch :	2018-2020
		ELECTIVE-I Data	Semester	Ι
Hrs/Week:	5	Mining and Warehousing	Credits:	05

Course Objective

On successful completion of the course the students should understand the concept of data mining, classification and clustering techniques, Association rules and data warehousing.

K1	K1 C01 To remember the basic concepts of Data Mining and Data Warehouse Techniques					
K2	CO2 To get the idea of raw data to make it suitable for various data mining algorithms					
КЗ	CO3	To execute and measure interesting patterns from different kinds of databases				
K4	CO4	To analyze the techniques of clustering, classification, association finding,	feature			
		selection and visualization to real world data				
		CONTENTS	Hours			
UNIT I	I					
Introd	uction: 1	Basic data mining tasks - Data Mining versus Knowledge discovery in				
databa.	ses – data	a mining issues – data mining metrics – social implications of data mining –	13			
data mi	ining fron	n a database perspective.	10			
Data n	nining te	chniques: Introduction – a statistical perspective on data mining-similarity				
measur	es-decisi	on trees-neural networks-genetic algorithms.				
UNIT	II					
Classi	fication:	Introduction – Statistical – based algorithms - distance – based algorithms –	13			
decisio	on tree - l	based algorithms - neural network – based algorithms –rule – based algorithms				
- com	bining teo	chniques				
UNIT						
Cluste	ring: Intr	oduction – Similarity and distance measures – Outliers.				
Hierarchical algorithms: Agglomerative algorithms – Divisive clustering.						
Partiti	oned algo	Drithms: Minimum Spanning tree – Squared error clustering algorithm – K –				
means	clustering	g – Nearest neighbor algorithm – PAM algorithm – Bond energy algorithm –				
	ing with §	genetic algorithm – Clustering with neural networks.				
	lV otion mul	as Introduction large item sets Besig algorithms Apriori algorithm				
Associa	ng algori	thm Dertitioning Derallel & distributed algorithms: Data parallelism				
Sampi Task p	ng argon arallelism	Comparing approaches Incremental rules	13			
A dyan	ced asso	ciation rules techniques. Generalized association rules – Multiple level	13			
associa	tion rule	s = 0 uantitative association rules – Using multiple minimum supports –				
Correla	tion rules	Measuring the quality of rules				
UNIT	V					
Data	Warehou	using: Introduction - characteristics of a data warehouse – data marts – other				
aspect	s of data	mart. Online analytical processing: Introduction - OLTP & OLAP systems-	13			
data n	nodeling	- star schema for multidimensional view - data modeling - multifact star				

schema or snow flake schema–OLAPTOOLS–State of the market – OLAP TOOLS and the internet. **Developing a Data Warehouse:** why and how to build a data warehouse –data warehouse architectural strategies and organization issues - design consideration – data content – metadata - distribution of data – tools for data warehousing – performance considerations –crucial decisions in designing a data warehouse. *Applications of data warehousing and data mining in government*

Total Hours

**Italicized* texts are for self study

Power point Presentations, Seminar, Assignment, Case study

Text Books

- 1. Margaret H. Dunham, 2008, "Data mining introductory and advanced topics", 3rd Edition, Pearson Education.
- 2. Prabhu C.S.R, 2000, "Data warehousing concepts, techniques, products and a applications", 3rd Edition, PHI.

Reference Books

1. Jiawei Han & Micheline Kamber, 2006, "Data mining Concepts & Techniques", 2nd Edition, Academic Press.

2. Arun K.Pujari, 2003, "Data Mining Techniques", Revised Edition, Universities Press (India) Pvt.Ltd.

MAPPING

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	S	Н	S
CO2	Н	М	Н	S	Н
CO3	S	Н	М	М	М
CO4	М	Н	Н	S	S

S: Strong H: High M: Medium L: Low

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: M. Dhavapriya	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

65

Effective from the year 2018 onwards

J					
Programme code:	M.Sc	Programme Title :	Master of Computer Science		
Course Code:	18PCS104	Title	Batch :	2018-2020	
		Programming Lab-I:	Semester	Ι	
Hrs/Week:	5	Android Programming	Credits:	04	

Course Objective

On successful completion of the course the students should be equipped with skills for analyzing, designing, developing and troubleshooting android applications.

K3	C01	To execute Java programming language to build Android applications and use
		development tools in the Android development environment.
K4	CO2	To figure out UI-rich applications using all the major UI components like Fragments
		and the Action Bar, Layouts, various controls.
K5	CO3	To access and manipulate data using Content Providers, Shared Preferences and
		Notifications with SQLite database.

- 1. Create a simple program to display a "HelloWorld" on screen
- 2. Create an application using Text Controls
- 3. Create an application using Button Controls
- 4. Create an application using AutocompleteTextView Control
- 5. Create an application using MultiAutocompleteTextView Control
- 6. Create an application using RadioButton, Control
- 7. Create an application using ImageView Control
- 8. Develop an application using Date Control
- 9. Create an application using Time Control
- 10. Create a program using TextClock and Analog Controls
- 11. Create a program using ListView Controls
- 12. Create a program using Spinner Controls
- 13. Create a program using Gallery Controls
- 14. Create a program using GridView Controls
- 15. Create a program using MapView Controls
- 16. Create an android application using styles and themes.
- 17. Create a program using GridView Controls
- 18. Create an application using different types of layout managers.
- 19. Develop an application using Menus and Actionbars
- 20. Create an application using Fragements
- 21. Create an application using Fragements
- 22. Develop an application using Broadcast Receivers
- 23. Develop an application using SQLite Database
- 24. Create an application to implement Drag and Drop concept
- 25. Develop an application using single touch and multi touch
- 26. Develop an application to display the various sensors available in an android device
- 27. Develop an application to measure and display gravity from accelerometers

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	М	S	Н
CO2	М	М	S	S	Н
CO3	М	S	Н	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.Vallinayagam	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS105	Title	Batch :	2018-2020
		Programming Lab-II: Design	Semester	Ι
Hrs/Week:	5	and Analysis of Computer	Credits:	04
		Algorithms		

Course Objective

On successful completion of the course the students should understand the concepts of various data structures.

Course Outcomes (CO)

К3	CO1	To implement appropriate data structure for given contextual problem
K4	CO2	To analyze complexities of various data structure algorithms
K5	CO3	To prove appropriate data structure is applied to specified problem definition

Program to implement the concept for

- 1. Permutation Generator
- 2. Towers of Hanoi
- 3. Circular Queue
- 4. Stack using Linked list
- 5. Doubly linked list
- 6. Tree traversal(inorder, preorder, postorder)
- 7. Graph traversal Using Depth first search
- 8. Graph traversal Using Breadth first search
- 9. Binary search
- 10. Merge sort using divide and conquer
- 11. Quick sort
- 12. Insertion of element into heap
- 13. Implementation of 8-Queens problem
- 14. Traveling sales man problem
- 15. Knapsack using Greedy Method
- 16. Minimum Cost Spanning tree
- 17. Optimal Binary Search
- 18. 0/1 Knapsack problem using dynamic programming
- 19. All pairs shortest path
- 20. Flow shop scheduling.
- 21. Knapsack problem using backtracking

Effective from the year 2018 onwards

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	S	Н	S
CO2	S	М	Н	S	Н
CO3	S	Н	S	М	S

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: N.Arulkumar	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

SEMESTER II

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS206	Title	Batch :	2018-2020
		Python programming	Semester	II
Hrs/Week:	4		Credits:	04

Course Objective

On successful completion of this course the students should understand the core principles of the Python Language and use the tools to produce well designed programs in python and create effective GUI applications.

K1	CO1	To remember the principles of structured programming Recognize and construct			
		common programming idioms: variables, loop, branch, subroutine, and input/output.			
K2	CO2	To understand the common programming idioms: variables, loop, branch, subroutine,			
		and input/output			
КЗ	CO3	To deploy the concepts of lists, tuples, dictionaries, standard libraries, modular			
		programming and the design of user interfaces			
K4	CO4	To figure out ability to analyze and solve the problems using advanced facilities of the			
		Python language			

CONTENTS	Hours
 UNIT I Introduction to Python: Introduction – Python overview – Getting started – Comments – Python identifiers – Reserved keywords – Variables – Standard data types – Operators – Statements and Expressions – String operations – Boolean expressions. Classes and Objects: Overview of OOP – Data encapsulation – Polymorphism – Class definition – Creating objects – <i>Inheritance</i> – Multiple inheritances – Method overriding – Data encapsulation – Data hiding. 	10
UNIT II Control Statements and Functions: <i>Control Statements:</i> The for loop – While statement – if elif else statement – Input from keyboard. Functions: Introduction – Built-in functions – Type conversion – Type coercion – Date and time – dir() function – help() function – User defined functions – Parameters & arguments – Function calls – The return statement – Python recursive function.	10
UNIT III Strings and Lists: Strings – Compound data type – len function – String slices – String traversal – Escape characters – String formatting operator – String formatting functions. Lists – Values and accessing elements – Traversing a list – Deleting elements from list – Built-in list operators – Built-in list methods.	10

UNIT IV	
Tuples and Dictionaries: Tuples – Creating tuples – Accessing values in tuples – Tuple assignment – Tuples as return values – Basic tuple operations – Built-in tuple functions Dictionaries – Creating dictionary – Accessing values in dictionary – Updating dictionary – Deleting elements from dictionary – Operations in dictionary Built-in dictionary methods.	11
UNIT V	
Files and Exceptions: Introduction to File Input and Output-Using loops to process files-	
Processing Records-Exception.	11
GUI Programming: Graphical user Interface, Using the tkinter Module, Display text with	11
Label Widgets-Organizing Widget with Frames-Button Widgets and Info Dialog Boxes,	
Getting Input with Entry Widget using Label as Output Fields, Radio button, Check buttons.	
Total Hours	52
* Italicized texts are for self study	
Power point Presentations, Group discussions, Seminar , Assignment	
Text Books	
1. E Balagurusamy, 2016, "Introduction to computing and problem solving using python",	
McGrawHill publication.	
2. Tony Gaddis, "Starting out With Python", 3 rd Edition.	
Reference Book	
1. Mark Lutz, 2013, "Learning Python", 5th Edition.	

2. Welsey J. Chun, 2001, "Core Python Programming", Prentice Hall.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	М	Н	М
CO2	Н	М	Н	S	Н
CO3	М	S	L	М	S
CO4	S	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R.Nandhakumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS207	Title	Batch :	2018-2020
		Advanced Networks	Semester	II
Hrs/Week:	4		Credits:	04

Course Objective

On successful completion of the course the students should gain in-depth knowledge of Internet protocols and their functionalities.

K1	C01	To recollect OSI and TCP/IP layers and their tasks. Interpret and explain physical, logical
		and port addresses
K2	CO2	To comprehend Standard Ethernet and Mapping techniques
К3	CO3	To deploy Logical addressing and discuss the format of Ipv4 and Ipv6 addresses
K4	CO4	To analyze the problems and solutions associated with delivery and forwarding of packets

CONTENTS	Hours
UNIT I	
Introduction and overview: The Motivation For Internetworking-The TCP/IP Internet- Internet Services-History and scope of the Internet-The Internet Architecture Board-The IAB Reorganization. Review of Underlying Network Technologies: Two Approaches To network Communication-Wide Area And Local Area Networks-Ethernet Technology- Switched Ethernet-Asynchronous Transfer Mode. Internetworking Concept and Architectural Model-Classful Internet Addresses-Mapping Mapping Internet Addresses To Physical Addresses(ARP): The Address Resolution Problem-Two Types Of Physical Addresses-Resolution Through Direct Mapping- Resolution Through Dynamic Binding-The Address Resolution Cache-ARP Cache Timeout-ARP Refinements-Relationship Of ARP To Other Protocols-ARP Implementation- ARP Encapsulation And Identification-ARP Protocol Format-Automatic ARP Cache Revalidation-Reverse Address Resolution(RARP).	10
UNIT II Internet Protocol: Connectionless Datagram Delivery (IPv4): A Virtual Network- Internet Architecture and Philosophy-The Conceptual Service Organization-Connectionless Delivery System-Purpose of the Internet Protocol-The IPv4 Datagram-Internet Datagram Options. Forwarding IP Datagrams: Forwarding In An Internet-Direct And Indirect Delivery-Table-Driven IP Forwarding-Next-Hop Forwarding- The IP Forwarding Algorithm-Forwarding With IP Addresses-Internet Protocol. Error And Control Messages(ICMP): The Internet Control Message Protocol-Error Reporting Vs. Error Correction-ICMP Message Delivery-ICMP Message Format-Testing Destination Reachability And Status(ping)-Echo Request And Reply Message Format-Reports Of Unreachable Destinations-Congestion And Datagram Flow Control-Source Quench Format.	11
UNIT III Classless And Subnet Address Extensions (CIDR): Review Of Relevant Facts- Minimizing Network Numbers-Proxy ARP-Subnet Addressing-Flexibility In Subnet Address Assignment -The Subnet Forwarding Algorithm-A Unified Forwarding Algorithm. Protocol Layering: Introduction –Needs-Conceptual Layer_ Functionality- X.25 and ISO Model-Locus of intelligence-Principle-Network substructure-TCP/IP Model-Disadvantage- Idea behind Multiplexing and Demultiplexing. User Datagram Protocol (UDP): Identifying The Ultimate Destination-The User	10

10
10
11
52
Hall.

3. Menezes.A, Van Oorschot.P and Vanstone. S, 2011,"Hand Book of Applied Cryptography", CRC Press.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	S	М	S	S	Н
CO3	М	S	S	Н	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: R. Nandha Kumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS208	Title	Batch :	2018-2020
		Big Data Analytics	Semester	II
Hrs/Week:	4		Credits:	04

Course Objective

On successful completion of this course students will possess the skills necessary for utilizing tools (including deploying them on Hadoop/MapReduce) to handle a variety of big data analytics, and able to apply R- tool for statistical analysis.

K1	CO1	To remember how to collect, manage, store, query, and analyze various for	ms of big
		data and data types of R.	
K2	CO2	To understand the concept and challenge of big data and why existing tech	nology is
		inadequate to analyze the big data	
K3	CO3	To apply R programming for statistics and data analysis.	
K4	CO4	To analyze un-modeled, multi-structured data using Hadoop, MapReduce an	d how R
		Programming has made modifications in Big Data.	
		CONTENTS	Hours
UNIT Funda – Big o Big D require Compt	I amentals data mana ata Type ements – uting – Ba	of Big Data: Evolution of Data Management- <i>Managing the data</i> – Big Data agement architecture. es: Structured data – Unstructured Data –Real Time and Non- real time Big Data together. Distributed Computing: History of Distributed asics of Distributing Computing – Performance.	10
LINIT	П		
Big Da Securi Analyt Basics Virtua Cloud model: Big Da	ata Techn ty Infrast tical Data of Virtu lization – and Big s – Cloud ata Cloud	 nology Components: Big Data Stack – Redundant Physical Infrastructure – ructure – Operational Databases – Organizing Data Services and Tools – Warehouses – Big Data Analytics – Big Data Applications. Virtualization: nalization – Managing virtualization with Hypervisor – Abstraction and Implementing Virtualization. Data: Cloud in the context of Big Data – Cloud Deployment and Delivery as an imperative for big data – Use of cloud for Big data – Providers in the Market. 	10
UNIT Opera Graph Map I Putting Exploi map R Hadoo Storing Ecosys	III ational Da spatial, Reduce F g Map ring the Reduce.Ha op Ecosys g Big Da stem	 atabase: Relational, Non-relational, Key-value Pair, Document, Columnar, Polygot Persistence. bundamentals: Origin of Map Reduce- Map Function – Reduce Function – and Reduce together – Optimizing Map-Reduce Tasks. world of Hadoop: Hadoop – Hadoop Distributed File System – Hadoop adoop Foundation and Ecosystem: Building Big Data Foundations with stems – Managing Resources and Applications with Hadoop YARN – ta with HBase – Mining Big Data with Hive – Interacting with Hadoop 	11
UNIT Introd Gettin	IV lucing R: g Started	The Big Picture – Exploring R – The Fundamentals of R – Work with R - with Arithmetic – Getting Started with Reading and Writing – Working with	10

Dimensions.	
UNIT V Coding in R – Putting fun in functions – Controlling the logic flow – Debugging Your Code – Getting Data into and out of R – Manipulating and Processing Data – Working with Graphics – Using Base Graphics.	11
Total Hours	52
*Italicized texts are for self study	
Power point Presentations, Seminar, Assignment	
Text Book	
1. Judith Hurwitz, Alan Nurgent, Dr. Fern Halper, Marcia Kaufman, 2013, "Big Data for	
Dummies", First Edition, A Wiley Publication.	
2. Andrie De Vries, Joris Meys, 2015, "R for Dummies", 2 nd Edition, John Wiley & Sons.	
Reference Books	
1. Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2013, "Big Data, Big Analytics –	
Emerging Business Intelligence and Analytic Trends For Today's Businesses", First Edition	,
A Wiley Publication.	
2. Strata Conference, Making Data Work, 2013, "Big Data Now", First Edition, Shroff	
Publication.	
3. Kun Ren, 2016, "Learning R Programming", First Edition, Packt Publication.	

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	М	Н	Н	S
CO2	М	Н	Н	М	S
CO3	Н	М	Н	Н	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:M.Dhavapriya	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE – II

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS2E1	Title	Batch :	2018-2020
		ELECTIVE- II:	Semester	II
Hrs/Week:	5	Computing Technologies	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of cloud computing, developing cloud services, Centralizing Email communications, cloud computing services and grid computing.

K1	C01	To understand the architecture and concept of different Cloud models-
		SaaS,PaaS,Web Services and On-Demand Computing
K2	CO2	To provide a strong fundamental concepts in the underlying principle of cloud
		virtualization, cloud storage, data management and data visualization
K3	CO3	To implement various applications by utilizing cloud platforms such as Google
		AppEngine and Amazan's web services(AWS)
K4	CO4	To analyze various Grid computing technologies such as OGSA and OGSI

CONTENTS	Hours
UNIT I	13
Fundamentals of grid and cloud computing: Introduction to Grid computing- Merging the Grid	
Services Architecture with the Web Services Architecture. Introduction to Cloud computing - History of	
Cloud Computing -How Cloud Computing works-Companies in the Cloud Computing Today	
UNIT II	13
Developing cloud services: Computing in the Cloud - The Pros and Cons of Cloud Computing-Benefits	
of Cloud Computing. Developing Cloud Services: Web Based Application - Pros and Cons of Cloud	
Service Development - Types of Cloud Service Development - Software as a Service - Platform as a	
Service - Web Services - On-Demand computing - Discovering Cloud Services Development Services	
and Tools – Amazon Ec2- Google App Engine – IBM Clouds.	
UNIT III	13
Cloud computing for everyone: Centralizing Email communications - collaborating on Schedules -	
Collaborating on To-Do Lists - Collaborating Contact Lists - Cloud computing for the Community -	
Collaborating on Group Projects and Events - Cloud Computing for the Corporation	
UNIT IV	13
Using cloud services: Collaborating on Calendars, Schedules and Task Management - Exploring Online	
Scheduling Applications - Exploring Online Planning and Task Management - Collaborating on Event	
Management - Collaborating on Contact Management - Collaborating on Project Management -	
Collaborating on Databases - Storing and Sharing Files - Evaluating Web Mail Services - Evaluating	
Web Conference Tools - Collaborating via Social Networks and Groupware - Collaborating via Blogs	
and Wikis	
UNIT V	13
$\label{eq:GGSA} \textbf{Grid computing:} Open Grid Services Architecture (OGSA) - Sample Use Cases that drive the OGSA -$	

The OGSA Platform Components – Open Grid Services Infrastructure (OGSI) – OGSA Basic Services

Total Hours

65

*Italicized texts are for self study

Power point Presentations, Group discussions, Seminar ,Quiz, Assignment, Experience

Discussion, Brain storming, Activity

Text Books

- 1. Joshy Joseph & Criag Fellenstein, 2009, "Grid Computing", PHI, PTR.
- 2. Michael Miller, August 2009, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing.

Reference Books

1. Jose C. Cunha, Omer F. Rana (Eds), 2006, "Grid Computing", Springer International Edition.

2. Anthony T. Velte and others, 2011, "Cloud Computing" TATA Mc-Graw Hill Publications, New Delhi.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	S	S
CO2	Н	М	Н	S	Н
CO3	М	Н	S	М	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.Sharmila	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS2N1	Title	Batch :	2018-2020
		Non-Major Elective I:	Semester	II
Hrs/Week:	1	Multimedia Packages Lab	Credits:	02

Course Objective

On successful completion of the course the students should understand the concepts of Photoshop, Flash and Macromedia Director.

Course Outcomes (CO)

КЗ	C01	To implement the concepts of Image segmentation and video segmentation				
K4	CO2	To analyze the concepts of Storage models and Access Techniques of Multimedia				
		devices				
K5	CO3	To access Text, Audio Text and Audio tools				
	РНОТО	SHOP				
	• Use of	f basic tools				
	• Mergi	ng two images				
	Clonii	ng an image				
	 Chang 	ging color of an image				
	• Give	Light effect to the image				
	• Icy In	nage				
	• Paint	and Rainbow effect				
	• Desig	n a flex for college using Photoshop				
	Rain e	effect				
	• Bubbl	ed effect				
	FLASH					
	 Motio 	n Tween				
	• Text I	Bouncing				
	• Text A	Animate				
	• Image fading					
	Butterfly Animation					
	• Bound	ring Ball				
	MACRO	MEDIA DIRECTOR				
	• Basic	Animation				
	• Slide	Interaction				

**Italicized* texts are for self study

Power point Presentations , Brain storming, Activity

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	Н	М	Н	Н	Н
CO3	М	S	S	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: R.Nandhakumar	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title : Master of Computer Scienc		puter Science
Course Code:	18PCS2N2	Title	Batch :	2018-2020
		Non-Major Elective I: Web	Semester	II
Hrs/Week:	1	Designing Lab	Credits:	02

Course Objective

The objective of this course is to enable the students to develop and design various applications using Web Technology.

Course Outcomes (CO)

К3	C01	To apply critical thinking skills to design and create websites
K4	CO2	To analyze and write a well formed / valid XML document
K5	CO3	To access and analyze website performance by interpreting analytics to measure site traffic, SEO, engagement, and activity on social media

- HTML Tags
- Tables
- Forms
- Frames
- Web Creation
- CSS Rules
- CSS Grouping Style
- XML using CSS
- Address Book
- DTD for Book Information
- Resume Creation using DTD
- XSL Transformation
- XSL Sorting
- Event Handling
- Filters

**Italicized* texts are for self study

Power point Presentations, Experience Discussion, Brain storming, Activity

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	S
CO2	Н	М	S	L	Н
CO3	S	S	S	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R. Nandhakumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS209	Title	Batch :	2018-2020
		Programming Lab-III :	Semester	П
Hrs/Week:	4	rymon riogramming	Credits:	04

Course Objective

On successful completion of the course the students should write well-documented programs in the Python language, including use of the logical constructs of that language.

К3	CO1	To implement, Interpret, Contrast of various operators.		
K4	CO2	To review and analyze database with variables, loop, branch, subroutine, and input/output		
K5	CO3	To validate how databases are integrated with components ,modular programming and the design of user interfaces		

- 1. Write a program that displays the following information: Your name, Full address, Mobile number, College name, Course subjects.
- 2. Write a program to find the largest three integers using if-else and conditional operator.
- 3. Write a program that asks the user to enter a series of positive numbers (The user should enter a negative number to signal the end of the series) and the program should display the numbers in order and their sum.
- 4. Write a program to find the product of two matrices [A]mxp and [B]pxr
- 5. Write recursive and non-recursive functions for the following:
 - a. To find GCD of two integers.
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number n
- 6. Write a program to display two random numbers that are to be added, such as: 247 + 129, the program should allow the student to enter the answer. If the answer is correct, a message of congratulations should be displayed. If the answer is incorrect, a message showing the correct answer should be displayed.
- 7. Write recursive and non-recursive functions to display prime number from 2 to n.
- 8. Write a program that writes a series of random numbers to a file from 1 to n and display.
- 9. Write a program to create file, write the content and display the contents of the file with each line preceded with a line number (start with 1) followed by a colon.
- 10. In a program, write a function that accepts two arguments: a list and a number n. The function displays all of the numbers in the list that are greater than the number n.

- 11. Write a program with a function that accepts a string as an argument and returns the no. of vowels that the string contains. Another function to return number of consonants.
- 12. Write a program that opens a specified text file and then displays a list of all the unique words found in the file. (Store each word as an element of a set.)
- 13. Write a program to analyze the contents of two text files using set operations.
- 14. Write a program to implement the inheritance and dynamic polymorphism.
- 15. Write a GUI program that converts Celsius temperatures to Fahrenheit temperatures.
- 16. Write a GUI program that displays your details when a button is clicked.

Power point Presentations, Experience Discussion, Brain storming

PSO **PSO1** PSO2 **PSO3 PSO4 PSO5** CO S **CO1** Η М Η S **CO2** Η Μ Μ S Η S **CO3** Μ Η М Μ

MAPPING

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R.Nandhakumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS210	Title	Batch :	2018-2020
		Programming Lab-IV:	Semester	П
Hrs/Week:	4	Networks	Credits:	04

Course Objective

On successful completion of the course the students should understand the concepts of Client/Server, TCP, and UDP.

Course Outcomes (CO)

K3	CO1	To deploy and implement next generation protocols required for emerging
		applications
K4	CO2	To analyze different protocols used for packet communication
K5	CO3	To access Client/Server interaction

- 1. Program to generate IP of the machine
- 2. Program to implement Ping Server using raw sockets
- 3. Program to demonstrate the PING command
- 4. Program to establish Single side communication using TCP
- 5. Program to establish Double side communication using TCP
- 6. Program to establish Single side communication using UDP
- 7. Program to establish Double side communication using UDP
- 8. Program to establish Chatting
- 9. Program to Parse URL Address into its components
- 10. Program to read Source code of a Website
- 11. Program to find the IP address of a given Website
- 12. Program to generate Conversion of lowercase to uppercase
- 13. Program to implement UDP packets Send and Receive
- 14. Program to generate Asynchronous Protocol
- 15. Program to implement Stop and Wait Protocol
- 16. Program to implement the Concurrent Server
- 17. Program to demonstrate the ECHO command
- 18. Program to establish Gossip Client and Server
- 19. Program to implement the concept of CRC
- 20. Program to establish a Command line who is client
- 21. Program to validate a Client Password
- 22. Program to find Shortest Path Routing between nodes
- 23. Program to send a mail using SMTP
- 24. Program to Download a file from the internet and save a copy
- 25. Program to establish the concept of Sliding Window Protocol
- 26. Program to calculate the Area with the radius between C/S
- 27. Program to print DNS record of an internet address
- 28. Program to implement User Interface
- 29. Program to perform File Transfer using FTP
- 30. Program to send a single message to multi-client[Broadcasting]
- 31. Program to generate Date time Client and Server

Power point Presentations, Assignment, Experience Discussion, Brain storming
MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	Н
CO2	Н	М	Н	S	Н
CO3	М	S	Н	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R.Nandhakumar	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS211	Title	Batch :	2018-2020
		Programming Lab-V:	Semester	II
Hrs/Week:	3	Unified Modeling Language	Credits:	04
		and R- Tool		

Course Objective

On successful completion of the course the students should understand the concepts of UML Diagrams for various applications and R Programming for statistical data analysis.

Course Outcomes (CO)

КЗ	C01	To implement potential benefits of object-oriented programming over other
		approaches
K4	CO2	To interpret object-oriented approach for developing applications of varying complexities
K5	CO3	To verify how a system interacts with its environment using R-Tool

Create a UML diagrams for the following applications.

- 1. Single sign-on to Google Application
- 2. ATM Processing System
- 3. Quiz system
- 4. Student information system
- 5. Tourism and travel management system
- 6. Online shopping Domain
- 7. Construction management system
- 8. Library domain model
- 9. Inventory management system

Note: The applications are developed using Class, Object, Use case, Sequence, Activity, Collaboration, Deployment, Component diagrams.

R Tool

- 1. Calculate Mean, Standard Deviation and Histogram by reading data from a file.
- 2. Simple Vector and Matrix calculations using R.
- 3. Create functions with Looping using R.
- 4. Create a simple data frame from 3 vectors. Order the entire data frame by the first column.
- 5. Draw a scatterplots for a dataset using R.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	S	Н	S
CO2	Н	М	Н	S	Н
CO3	S	L	М	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:M.Dhavapriya	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

SEMESTER III

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS312	Title	Batch :	2018-2020
		J2EE Technologies	Semester	III
Hrs/Week:	4		Credits:	04

Course Objective

On successful completion of the course the students should understand the features of J2EE and the Web services.

K1	C01	To recollect different constructors and methods in JFC components, JDBC, C/S interaction
K2	CO2	To get an idea to construct an enterprise application using Java Beans
K3	CO3	To implement server side validations with session and database using JDBC
K4	CO4	To analyze web application using Servlet, Java Server Pages and RMI

CONTENTS	Hours
UNIT I	
Introduction to JFC: JPanel-JFrame-JApplet-JSplitPane-JTabbedPane-JViewport-JMenu-	10
Items and Labels - JTextField - JTextArea - JButtons - JButton Classes - JCheckBoxes -	10
JRadioButton-JComboBoxes-JList.	
UNIT II	
Advanced JFC Components: JTree s- JTables – JInternalFrame - JDesktop Manager -	10
JProgressbar.	
UNIT III	
Java Beans: Introduction to Java Bean-Advantages of a Java Bean-Application Builder	
tools-The Bean Developer Kit (BDK)-Jar files-Introspection-Developing a Simple Bean-	11
Using Bound Properties-Using Bean Info Interface-Constrained Properties-Persistence-	
Customizers-Java Bean API.	
UNIT IV	
Servlet Overview and Architecture: Movement to Server Side Java-Practical Applications for	
Java Servlets-Java Servlet Alternatives-Reason to use Java Servlets-Java Server Architecture -	
Servlet Basics-The Lifecycle of Servlet-A Basic Servlet.	11
Servlet Chaining: Definition for Servlet Chaining-Uses of Servlet Chains-A Practical example	
using Servlet Chaining-Servlets and JDBC-Two Tier and Three Tier Database access models-	
JDBC Servlet-Session Tracking-Using Cookies-Using Session Objects.	
UNIT V	
Java Server Page (JSP):Introduction-Server-side programming-Life Cycle of JSP- To Créâte	
and run JSP- Architecture of JSP-Scripting tag Elements- Implicite Object- Beans - Conditions -	
Directives - Déclarations – Implicite Variables -Expressions.	10
RMI (Remote Method Invocation): Introduction - RMI Architecture-Bootstrapping and RMI	
Registry - The RMI Compiler - Object Specialization and Parameter Passing - A Simple	
example.	
Total Hours	52

*Italicized texts are for self study

Power point Presentations, Seminar, Assignment, Brain storming

Text Books

- Patric Naughton, Herbert Schildt, 2001, "The Complete Reference-Java", 5th Edition, Tata McGraw Hill
- 2. Sams Series, James GoodWill, 2004, "Developing Java Servlets", 1st Edition, SAMS Techmedia
- 3. Dr.Sathya Raj pantham, 2000, "Pure Java Swing", 1st Edition, Tech Media Publication
- 4. Sam Series, 2006, "Java RMI", Tata McGraw Hill

Reference Books

- 1. Harley Hahn, 1996, "The Internet Complete Reference", 2nd edition, Tata McGraw-Hill International Editions
- 2. Patric Naughton, 1996, "The Java Hand Book", 3rd Edition, Tata McGraw Hill
- 3. Stephen Potts, Mike Kopack, 2004, "Web Services", Kindle Edition, Pearson Education

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	S
CO2	М	М	Н	S	Н
CO3	Н	S	Н	Н	М
CO4	S	Н	S	S	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R. Nandhakumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS313	Title	Batch :	2018-2020
		Digital Image Processing	Semester	III
Hrs/Week:	5		Credits:	05

Course Objective

On successful completion of the course the students should understand the features of Java and the Web services. **Course Outcomes (CO)**

K1	C01	Get broad exposure and understanding of various applications of image processing in
		industry, medicine, and defense and other applications.
K2	CO2	To be familiar with basic concepts of two-dimensional signal acquisition, sampling, and
		quantization
КЗ	CO3	To implement the fundamental image enhancement algorithms such as histogram
		modification, contrast manipulation, and edge detection.
K4	CO4	To analyze programming skills in image compression, segmentation and restoration
		techniques.

CONTENTS	Hours
UNIT I	
Introduction: What is Digital image processing - the origin of DIP - Examples of fields that	
use DIP – Fundamentals steps in DIP – Components of an image processing system. Digital	12
Image Fundamentals: Elements of Visual perception - Light and the electromagnetic	13
spectrum - Image sensing and acquisition - Image sampling and Quantization- Some Basic	
relationship between Pixels – Linear & Nonlinear operations.	
UNIT II	
Image Enhancement in the spatial domain: Background - some basic Gray level	
Transformations - Histogram Processing - Enhancement using Arithmetic / Logic	13
operations -Basics of spatial filtering - Smoothing spatial filters - Sharpening spatial filters	
- combining spatial enhancement methods.	
UNIT III	
Image Restoration: A model of the Image Degradation / Restoration Process - Noise	
models - Restoration is the process of noise only - Spatial Filtering - Periodic Noise	
reduction by frequency domain filtering -Modeling the Degradation function -Direct	13
Inverse Filtering-Wiener Filtering-Constrained Least Squares (Regularized) Filtering -	
Iterative Nonlinear Restoration using the Lucy-Richardson Algorithm-Blind Deconvolution	
-Image Reconstruction from projections.	
UNIT IV	
Image Compression: Fundamentals - Image compression models - Elements of Information Theory	13
- Error Free compression - Lossy compression - Image compression standards-coding redundancy-	10
spatial redundancy	
UNIT V	
Image Segmentation: Detection and Discontinuities – Edge Linking and Boundary	13
deduction – Inresnoid – Region-Based segmentation – Segmentation by Morphological	
watersheds – The use of motion in segmentation.	

65

**Italicized* texts are for self study

Power point Presentations, Seminar, Assignment

Text Books

Total Hours

- 1. Rafael C. Gonzalez, Richard E. Woods, 2009, "Digital Image Processing", 2nd Edition, PHI/Pearson Education
- 2. Rafael C. Gonzalez, Richard E. Woods, 2009, "Digital Image Processing", 3rd Edition, PHI/Pearson Education
- 3. Rafael C. Gonzalez, Richard E.Woods, Steven L.Eddins, 2005, "Digital Image Processing Using MATLAB", 2nd Edition, Tata McGraw-Hill International Editions

Reference Books

- 1. Nick Efford, 2004, "Digital Image Processing a practical introducing using Java", Pearson Education
- 2. Chanda.B, Dutta Majumder.D, 2003, "Digital Image Processing and Analysis", PHI

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	М	Н	S
CO2	Н	Н	Н	S	М
CO3	М	S	S	М	М
CO4	S	Н	Н	S	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: P. Jayapriya	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS314	Title	Batch :	2018-2020
		Internet of Things	Semester	III
Hrs/Week:	5		Credits:	04

Course Objective

On successful completion of students will understand the fundamentals of Internet of Things, IoT Protocols, built a small low cost embedded system using Raspberry Pi and to apply the concept of Internet of Things in the real world scenario

Course Outcomes (CO)

K1	CO1	To remember web services to access/control IoT devices
K2	CO2	To understand the portable IoT using Raspberry Pi
K3	CO3	To deploy use of IoT application and connect to the cloud
K4	CO4	To analyze various protocols for IoT

CONTENTS	Hours
UNIT I	
Introduction to IoT: Internet of Things – Physical Design – Logical Design – IoT Enabling	
Technologies – IoT Levels & Deployment Templates – Domain Specific IoTs – IoT and	13
M2M – IoT System Management with NETCONF – YANG – IoT Platforms Design	
Methodology.	
UNIT II	
IoT Architecture: M2M high-level ETSI Architecture – IETF Architecture for IoT – OGC	12
Architecture - IoT Reference model - Domain model - information model - functional	13
model –communication model - IoT Reference Architecture.	
UNIT III	
IoT Protocols: Protocol Standardization for IoT – Efforts – M2M and WSN Protocols -	
SCADA and RFID Protocols - Unified Data Standards - Protocols - IEEE 802.15.4 -	13
BACNet Protocol - Modbus - Zigbee Architecture - Network Layer - 6LowPAN - CoAP -	
Security.	
UNIT IV	
Building IoT with RASPBERRY Pi and ARDUINO: Building IoT with RASPBERRY Pi	
- IoT Systems - Logical Design using Python - IoT Physical Devices and Endpoints - IoT	13
Device – Building blocks – Raspberry Pi – Board – Linux on Raspberry Pi – Raspberry Pi	
Interfaces - Programming Raspberry Pi with Python - Other IoT Platforms - Arduino	
UNIT V	
Case studies: IoT Design-Home Automation, Cities, Environment, Agriculture,	
Productivity Applications.	
Real world design constraints – Applications – Asset management, Industrial automation,	13
smart grid ,Commercial building automation ,Smart cities - participatory sensing - Data	
Analytics for IoT – Software & Management Tools for IoT Cloud Storage Models &	
Communication APIs – Cloud for IoT – Amazon Web Services for IoT.	
Total Hours	65
*Italicized toxts are for solf study	

Sitalicized texts are for self study

Power point Presentations, Seminar, Assignment

Text Book

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands – on Approach", Universities Press 2015.

Reference Books

- 1. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 2. Honbo Zhou, "The Internet of Things in the cloud: A Middleware Perspective", CRC Press, 2012.
- 3. Jan Holler ,Vlasios Tsiatsis ,Catherine Mulligan , Stamatis , Karnouskos Stefan Avesand , David Boyle ," From Machine to- Machine to the Internet of Things Introduction to a New Age of Intelligence " . Elsevier 2014.
- 4. Olivier Hersent, David Boswarthick ,Omar Elloumi "The Internet of things Key applications and Protocols ",Wiley 2012.

MAPPING

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	S	М	М	S	L
CO3	М	Н	S	Н	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:S.S.Shanthi	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name:Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE — III

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS3E1	Title	Batch :	2018-2020
		ELECTIVE – III : Soft	Semester	III
Hrs/Week:	5	Computing	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of Neural Networks, architecture, functions and various algorithms involved. 3. Fuzzy Logic, Various fuzzy systems and their functions.

K1	C01	To remember soft computing techniques and their applications.
K2	CO2	To understand perceptrons and counter propagation networks and fuzzy systems.
К3	CO3	To apply soft computing techniques to solve real life problems.
K4	CO4	To analyze various neural network architectures.

CONTENTS	Hours
UNIT I	
Fundamentals of Neural Networks: Basic concepts of Neural Networks -Human Brain -	
Model of an Artificial Neuron – Neural Network Architectures – Characteristics of Neural	13
Networks - Learning methods - Easy Neural Network Architectures - Some Application	
domains.	
UNIT II	
Back propagation Networks: Architecture of a Back-Propagation Network - Back	12
propagation Learning- Effect of Tuning parameters of the Back Propagation Neural	15
Network – Selection of various parameters in BPN.	
UNIT III	
Adaptive Resonance Theory: Introduction: Cluster Structure, Vector Quantization, Classical	
ART Networks, Simplified ART Architecture. ART1: Architecture of ART1-Special	13
features of ART1 Models-ART1 Algorithms. ART2: Architecture of ART2- ART2	
Algorithms.	
UNIT IV	
Fuzzy Set Theory: Fuzzy versus crisp, Crisp sets: Operation on Crisp sets- Properties of	
Crisp Sets-Partition and Covering. Fuzzy sets: Membership Function - Basic fuzzy set	12
Operations-properties of fuzzy sets. Crisp relations: Cartesian product-Other Crisp	15
Relations-Operations on Relations. Fuzzy relations: Fuzzy Cartesian product- Operations	
on Fuzzy Relations.	
UNIT V	
Fuzzy Systems: Crisp logic: Laws of Propositional Logic-Inference in propositional Logic.	
Predicate logic: Interpretations of Predicate Logic Formula – Inference in Predicate Logic.	13
Fuzzy logic: Fuzzy Quantifiers - Fuzzy Inference, Fuzzy rule based system -	
Defuzzification.	

65

*Italicized texts are for self study

Power point Presentations, Seminar, Assignment, Experience Discussion, Brain storming

Text Books

Total Hours

1. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy logic, and Genetic Algorithms Synthesis and Applications, PHI, 2005.

Reference Books

- 1. James A. Freeman, David M. Skapura, "Neural Networks-Algorithms, Applications, and Programming Techniques", Pearson Education.
- 2. Fredric M. Ham, IvicaKostanic, "Principles of Neuro computing for science of Engineering", TMCH.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	Н	М	Н	S	Н
CO3	L	S	S	S	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: N. Karthikeyan	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS315	Title	Batch :	2018-2020
		Programming Lab-VI:	Semester	III
Hrs/Week:	5	J2EE Technologies	Credits:	04

Course Objective

On successful completion of the course the students should understand the concepts of Web services, EJB and RMI.

Course Outcomes (CO)

К3	CO1	To implement server side validations with session and database using JDBC
K4	CO2	To analyze web application using Servlet, Java Server Pages and RMI
K5	CO3	To validate Swing components and Servlet lifecycle

JFC Components:

- 1. Generate a JButton using Swing components
- 2. Menu Creation using Swing components
- 3. Implement String Handling concepts
- 4. Demonstrate JTabbedPane
- 5. List the structure of JTree
- 6. Create a JTable using Swing Components.
- 7. Generate a Progress Bar Swing components
- 8. Generate a Scroll Pane Swing components
- 9. Generate a Combo Box Swing components
- 10. Generate a Radio Button Swing components

Servlet:

- 11. Demonstrate Generic Servlet.
- 12. Demonstrate HTTP Servlet
- 13. Demonstrate Servlet Chaining
- 14. Demonstrate JDBC Connectivity
- 15. Demonstrate JDBC using Servlet
- 16. Demonstrate Cookies.

Bean:

- 17. Demonstrate Juggler Bean
- 18. Demonstrate Molecular Bean
- 19. Implement Simple Property Bean
- 20. Create a program for Introspection **JSP:**
- 21. Create a JSP program for Fibonacci Series

RMI:

- 22. Create a RMI Program for Student Mark list
- 23. Create a RMI Program for Greatest of Two Numbers

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	Н	М	Н	Н	Н
CO3	S	S	S	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: R.Nandhakumar	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS316	Title	Batch :	2018-2020
		Programming Lab-VII :	Semester	III
Hrs/Week:	5	Digital Image Processing using MATLAB	Credits:	04

Course Objective

On successful completion of the course the students should understand about Image Processing, image compression and segmentation using MATLAB.

Course Outcomes (CO)

К3	CO1	To implement the fundamental image enhancement algorithms such as histogram
		modification, contrast manipulation, and edge detection.
K4	CO2	To analyze programming skills in image compression, segmentation and restoration techniques.
K5	CO3	To access MATLAB tools for image processing

- 1. Crop, Resize, Rotate an image
- 2. Crop an image using Simulink
- 3. Resize an image using Simulink
- 4. Rotate an image using Simulink
- 5. Adjusting the contrast in color image using Simulink
- 6. Adjusting the contrast in intensity image using Simulink
- 7. Finding Histogram of a RGB image
- 8. Finding Histogram of a gray and negative image
- 9. Arithmetic Operations
- 10. Blurring with Deconvolution Algorithm
- 11. Sharpening of an image using Simulink
- 12. Unsharp Masking and High Boost Filtering using Simulink
- 13. Removing Salt & Pepper noise
- 14. Remove Noise (Median Filter) using Simulink
- 15. Deblurring with Wiener Filter
- 16. Correct Non-Uniform Illumination using Simulink
- 17. Count Object in an image using Simulink
- 18. Image Compression using Discrete Cosine Transform.
- 19. Performing Morphological Operations.
- 20. Edge Detection using Prewitt, Sobel and Roberts.

Note: Laboratory works are to be done on MATLAB 7.0 tool.

Power point Presentations, Assignment, Experience Discussion, Brain storming

MAPPING

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	S	М	Н	S	Н
CO3	М	S	S	М	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: P.Jayapriya	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

SEMESTER IV

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Com	puter Science
Course Code:	18PCS417	Title	Batch :	2018-2020
		Industrial Project Work and	Semester	IV
Hrs/Week:	-		Credits:	08

Instructional Notes: Students are required to develop entire new software system or to enhance/modify functionalities of existing software or to provide customization based on existing technology/framework to fulfill specific requirements.

MAXIMUM MARKS : 200

PROJECT EVALUATION : 160

VIVA VOCE

Contents	Internal Mark	External Mark	
Project Evaluation	80	80	
Viva voce	20	20	
Grand Total	100	100	200

:40

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr.M. Sakthi	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE I

S.No	SUBJECT CODE	TITLE
1	18PCS1E1	DATA MINING AND WAREHOUSING
2	18PCS1E2	EMBEDDED SYSTEMS
3	18PCS1E3	MACHINE INTELLIGENCE
4	18PCS1E4	DISTRIBUTED OPERATING SYSTEM

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS1E1	Title	Batch :	2018-2020
		ELECTIVE-I : Data Mining	Semester	Ι
Hrs/Week:	5	and Warehousing	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of data mining, classification, clustering techniques, Association Rules and data warehousing.

K1	CO1	To remember the basic concepts of Data Mining and Data Warehouse Techniques
К2	CO2	To get the idea of raw data to make it suitable for various data mining algorithms
К3	CO3	To execute and measure interesting patterns from different kinds of databases
K4	CO4	To analyze the techniques of clustering, classification, association finding, feature
		selection and visualization to real world data

CONTENTS	Hours
UNIT I	
Introduction: Basic data mining tasks - Data Mining versus Knowledge discovery in	
databases - data mining issues - data mining metrics - social implications of data mining -	12
data mining from a database perspective.	15
Data mining techniques: Introduction – a statistical perspective on data mining–similarity	
measures-decision trees-neural networks-genetic algorithms.	
UNIT II	
Classification: Introduction - Statistical - based algorithms - distance - based algorithms -	12
decision tree - based algorithms - neural network - based algorithms -rule - based	15
algorithms – combining techniques	
Clustering: Introduction – Similarity and distance measures – Outliers	
Hierarchical algorithms: Agglomerative algorithms – Divisive clustering	
Partitional algorithms: Minimum Spanning tree – Squared error clustering algorithm – K	13
- means clustering - Nearest neighbor algorithm - PAM algorithm - Bond energy	
algorithm – Clustering with genetic algorithm – Clustering with neural networks	
argonum Crustering with genetic argonum Crustering with neural networks.	
UNIT IV	
Association rules: Introduction - large item sets. Basic algorithms: Apriori algorithm –	
Sampling algorithm – Partitioning. Parallel & distributed algorithms: Data parallelism -	10
Task parallelism. Comparing approaches. Incremental rules.	13
Advanced association rules techniques: Generalized association rules – Multiple level	
association rules – Quantitative association rules – Using multiple minimum supports –	
Correlation rules. Measuring the quality of rules.	
UNIT V	
Data Warehousing: Introduction - characteristics of a data warehouse - data marts - other	13
aspects of data mart. Online analytical processing: Introduction - OLTP & OLAP	

	a db
systems- data modeling - star schema for multidimensional view - data modeling -	
multifact star schema or snow flake schema-OLAPTOOLS-State of the market - OLAP	
TOOLS and the internet. Developing a Data Warehouse: why and how to build a data	
warehouse -data warehouse architectural strategies and organization issues - design	
consideration – data content – metadata - distribution of data – tools for data warehousing –	
performance considerations -crucial decisions in designing a data warehouse. Applications	
of data warehousing and data mining in government.	
Total Hours	65
*Italicized texts are for self study	
Power point Presentations, Seminar , Assignment, Case study	
Text Books	
1. Margaret H. Dunham, 2008, "Data mining introductory and advanced topics", 3 rd Edition	n, Pearson
education	
2. Prabhu C.S.R, 2000, "Data warehousing concepts, techniques, products and a applications" 3 rd Edition, PHI	,
Reference Books	
1. Jiawei Han & Micheline Kamber, 2001, "Data mining Concepts & Techniques", 2 nd Edition	on
Academic Press	
2. Arun K.Pujari, 2003, "Data Mining Techniques", Revised Edition, Universities Press (Ind	ia) Pvt.
Ltd.,	

MAPPING

PS0 C0	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	S	Н	S
CO2	Н	М	Н	S	Н
CO3	S	Н	М	М	М
CO4	М	Н	Н	S	S

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: M. Dhavapriya	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS1E2	Title	Batch :	2018-2020
		ELECTIVE- I:	Semester	Ι
Hrs/Week:	5	Embedded Systems	Credits:	05

Course Objective

On successful completion of the course the students should understand the different types embedded systems processors and its solutions in programming concepts using C and C++.

K1	C01	To recollect the mathematical model of the system
K2	CO2	To understand the working of real-time operating systems and real-time database
К3	CO3	To apply real-time algorithm for task scheduling
K4	CO4	To analyze work on design and development of protocols related to real-time communication

CONTENTS	Hours
UNIT I	
Introduction: Introduction to Embedded systems, processor in the system, Other hardware	
units, Software Embedded into a system, Exemplary Embedded Systems, Embedded	
System-On-Chip(SOC) and in VLSI Circuit.	13
Processor and Memory Organization: Structural units in processor, Memory Devices,	
Memory selection for embedded system, Allocation of memory to program segments and	
blocks and memory map of a system, direct memory access.	
UNIT II	
Devices and Buses for Device Networks: I/O Devices, Device drivers, Parallel port device	
drivers in a system, Serial port device drivers in a system, Devices drivers for internal	13
programmable timing devices, Interrupt servicing mechanism, Context and periods for	
context switching, Deadline and interrupt latency.	
UNIT III	
Programming concepts and embedded programming in C and C++: Software	12
programming in assembly language and in high level language, 'C' program elements	15
:header and source files and preprocessor directives, program elements: macros and	
functions, program elements : data types, data structures, modifiers, statement, loops and	
pointers, queues, stacks, list and ordered lists, embedded programming in C++, embedded	
programming in java, 'c' program compiler and cross-compiler, source code engineering	
tools for embedded C/C++, optimization of memory needs.	
UNIT IV	
Program modeling concepts in single and multiprocessor systems software-	
development processes modeling processes for software analysis before software	13
implementation programming models for event controlled or response time constrained real	
time programs, modeling of multiprocessor systems, software engineering practices in the	
time programs, modering of multiprocessor systems, software engineering practices in the	

embedded software development process: software algorithm complexity, software	
development process life cycle and its models, software analysis, software design, software	
implementation, software testing, validating and debugging, real time programming issues	
and during the software development process, software project management, software	
maintenance.	
UNIT V	
Inter-process communication and synchronization of processes, tasks and threads:	
multiple processes in an application, problem of sharing data by multiple tasks and routines,	
inter process communication.	
Real Time Operating Systems: operating system services, I/O subsystem, network	
operating systems, real-time and embedded system operating systems, interrupt routines in	
RTOS environment: handling of interrupt source call by the RTOS, RTOS task scheduling	
models, interrupt latency and response times of the tasks as performances matrices.	
Total Hours	65
*Italicized texts are for self study	
Power point Presentations Seminar ,Quiz, Assignment	
Text Books:	

1. Raj Kamal, 2008, "Embedded Systems", "Architecture, programming and design", International Editions, Tata McGraw-Hill

Reference Books:

- 1. Steve Heath, Elsevier, 2003, "Embedded Systems Design", 2nd Edition, Elsevier India Pvt Ltd.,
- 2. Qing Li & carotene Yao, 2006, "Real Time Concepts for Embedded System", CMP books, New York

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	L
CO2	Н	М	Н	S	Н
CO3	L	Н	S	М	М
CO4	М	Н	Н	Н	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: M. Meena Krithika	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

-jj				
Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS1E3	Title	Batch :	2018-2020
		ELECTIVE-I:	Semester	Ι
Hrs/Week:	5	Machine Intelligence	Credits:	05

Course Objective

On successful completion of the course the students should have to understand the different types of Intelligence problems and its solutions.

K1	CO1	To recollect different types of AI agents
K2	CO2	To understand AI search algorithms (uninformed, informed, heuristic, constraint
		satisfaction, genetic algorithms)
K3	CO3	To apply knowledge representation, reasoning, and machine learning techniques to
		real-world problems
K4	CO4	To analyze knowledge representation, reasoning, and machine learning techniques to
		real-world problems

CONTENTS	Hours
UNIT I	
Introduction: Introduction to AI-History of AI-Intelligent Agents- Agents and	
Environment-Good Behavior: Concept of Rationality-The nature of Environments- the	13
Structure of Agents. Solving problems by searching-Example problems-searching for	
solutions-Uninformed search strategies-Searching with partial Information.	
UNIT II	
Informed search and exploration: Informed search strategies-Heuristic functions-Local	
search algorithms and optimization problems-local search in continuous spaces-Constraint	12
satisfaction problems-backtracking search for CSPs-local search for constraint satisfaction	15
problems-The structure of problems-Adversarial search-games-optimal decisions in games-	
Alpha beta pruning-Imperfect, real-time Decisions.	
UNIT III	
Knowledge Representation: first order logic (FOL) -Syntax and semantics of FOL -	
Using FOL- Knowledge Engineering in FOL-Inference in FOL-Propositional Vs first order	13
inference- Unification and Lifting-Forward chaining-backward chaining-categories and	
objects-actions –situations-Events.	
UNIT IV	
Learning: Learning from Observations-forms of learning-Inductive learning-learning	
decision trees-Ensemble Learning-Knowledge in learning-Logical formulation of learning –	13
knowledge in learning-Explanation based learning-learning using relevance information-	
Inductive logical programming.	
UNIT V	12
Communication: Communication as action –A formal grammar for fragment of English-	13

Syntactic Analysis-Augmented Grammars-Semantic Interpretation-Ambiguity and	
disambiguation –discourse understanding-Grammar Induction.	
Total Hours	65
*Italicized texts are for self study	
Power point Presentations, Group discussions, Seminar , Assignment	
Text Books:	
1. Stuart Russel, Peter Norwig, 2002, "Artificial Intelligence – A modern approach", 2 ⁿ	^d Edition,
Pearson Education	
Reference Books:	
1. Elaine Rich, Kevin Knight, 2003, "Artificial Intelligence", 2 nd Edition, Tata McGrawHill	

2. Paterson. D.W., 1990, "Introduction to Artificial Intelligence and Expert Systems", 2nd Edition, Prentice Hall Of India

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	М	Н	S
CO2	Н	М	Н	L	Н
CO3	М	S	S	М	М
CO4	Н	Н	Н	S	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: N.Arulkumar	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

M.Sc Computer Science

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS1E4	Title	Batch :	2018-2020
		ELECTIVE- I:	Semester	Ι
Hrs/Week:	5	Distributed Operating System	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of Operating System, Inter-process communication and distributed Operating System.

K1	C01	To remember scheduling in distributed operating systems, fault tolerance, real-time
		distributed systems, and designing of distributed file systems
K2	CO2	To understand the hardware and software concepts of distributed operating systems,
		various design issues like transparency, flexibility etc.,
K3	CO3	To apply concept of design and implementation in the context of distributed
		operating systems
K4	CO4	To interpret design and development of distributed systems and distributed systems
		applications

CONTENTS	Hours
UNIT I	
Distributed Computer Operating System Fundamentals: What is a Distributed Computing System-Evolution of Distributed Computing Systems- <i>Distributed Commuting System Models</i> -Why is Distributed Computing System Gaining Popularity - What is a Distributed Operating System - Introduction to DCE-Creation-Components-Cells. Network types: LAN Technologies- WAN Technologies- Communication protocols-Internetworking.	13
UNIT II Message Passing: Introduction- Desirable Features of a Good Message Passing system- Issues in IPC by message passing- Synchronization- Buffering- Multidatagram Messages - Encoding and Deceding of Massage Data, Process Addressing, Eailure Hendling, Group	13
Communication.	
UNIT III	
Remote Procedure Calls: Introduction- The RPC Model- Transparency of RPC- Implementing RPC Mechanism- Stub Generation- RPC Messages- Marshaling Arguments and Results- Server Management- Parameter- <i>Passing Semantics</i> - Call Semantics- Communication Protocols for RPCs- Complicated RPCs-Client-Server Binding.	13
Distributed Shared Memory: Introduction- General Architecture of DSM System-	
Design and Implementation Issues of DSM- Granularity- Structure of Shared Memory	
Space- Replacement Strategy.	
UNIT IV Synchronization: Introduction- Clock Synchronization: How computer clocks are implemented-Drifting of clocks-Mutual Exclusion-Election Algorithms: Bully algorithm-	13

Ring algorithm.				
Process Management: Introduction- Process Migration: Features-Mechanisms-				
Heterogeneous systems-Advantages- Threads: Motivations-Models-issues-implementation.				
UNIT V				
Distributed File Systems: Introduction- Desirable Features of a Good Distributed File				
System- File Models- File-Accessing Models- File-Sharing Semantics- File-Caching	12			
Schemes- Design Principles.	15			
Case Studies: Introduction-Amoeba-V-System-Mach-Chorus-A Comparison of Amoeba,				
V-System, Mach and Chorus.				
Total Hours	65			
*Italicized texts are for self study				
Power point Presentations, Seminar, Assignment				
Text Books:				
1. Pradeep k. Sinha, 2000, "Distributed Operating Systems Concepts and Design", 3 rd ed	lition, PHI			
publications				
Reference Books:				
1. James L. Peterson & Silberschatz.A, 2001, "Operating System Concepts", World Student	Edition,			
2 nd Edition, Addison Wesley				
2. Andrew S. Tenenbaum, 2015, "Modern Operating Systems", 4 th edition, Prentice Hall				
3. Dietel H.M., 2000, "An Introduction to Operating Systems", World Student Edition, Add	son			
Wesley				

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	S
CO2	Н	Н	Н	S	Н
CO3	М	S	S	М	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R. Deepa	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE II

S.No	SUBJECT CODE	TITLE
1	18PCS2E1	COMPUTING TECHNOLOGIES
2	18PCS2E2	SATELLITE COMMUNICATION
3	18PCS2E3	ANTENNAS AND PROPAGATION
4	18PCS2E4	REMOTE SENSING AND SENSORS

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS2E1	Title	Batch :	2018-2020
		ELECTIVE- II:	Semester	II
Hrs/Week:	5	Computing Technologies	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of cloud computing, developing cloud services, Centralizing Email communications and cloud computing services.

K1	C01	To understand the architecture and concept of different Cloud models-
		SaaS, PaaS, Web Services and On-Demand Computing
K2	CO2	To provide a strong fundamental concepts in the underlying principle of cloud
		virtualization, cloud storage, data management and data visualization
K3	CO3	To implement various applications by utilizing cloud platforms such as Google
		AppEngine and Amazan's web services(AWS)
K4	CO4	To analyze various Grid computing technologies such as OGSA and OGSI

CONTENTS	Hours
UNIT I	13
Fundamentals of grid and cloud computing: Introduction to Grid computing- Merging the Grid	1
Services Architecture with the Web Services Architecture. Introduction to Cloud computing – History of	
Cloud Computing -How Cloud Computing works-Companies in the Cloud Computing Today	
	I
UNIT II	13
Developing cloud services: Computing in the Cloud - The Pros and Cons of Cloud Computing-Benefits	I
of Cloud Computing. Developing Cloud Services: Web Based Application - Pros and Cons of Cloud	1
Service Development - Types of Cloud Service Development - Software as a Service - Platform as a	1
Service - Web Services - On-Demand computing - Discovering Cloud Services Development Services	1
and Tools – Amazon Ec2- Google App Engine – IBM Clouds.	
UNIT III	13
Cloud computing for everyone: Centralizing Email communications – collaborating on Schedules –	
Collaborating on To-Do Lists - Collaborating Contact Lists - Cloud computing for the Community -	1
Collaborating on Group Projects and Events - Cloud Computing for the Corporation	1
UNIT IV	13
Using cloud services: Collaborating on Calendars, Schedules and Task Management – Exploring Online	1
Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event	1
Management - Collaborating on Contact Management - Collaborating on Project Management -	1
Collaborating on Databases - Storing and Sharing Files - Evaluating Web Mail Services - Evaluating	1
Web Conference Tools - Collaborating via Social Networks and Groupware - Collaborating via Blogs	1
and Wikis	1
UNIT V	13
Grid computing: Open Grid Services Architecture (OGSA) – Sample Use Cases that drive the OGSA –	L

65

 M.Sc Computer Science
 Effective from the year 2018 onwo

 The OGSA Platform Components – Open Grid Services Infrastructure (OGSI) – OGSA Basic Services

Total Hours

*Italicized texts are for self study

Power point Presentations, Group discussions, Seminar ,Quiz, Assignment, Experience Discussion, Brain storming, Activity

Text Books

Reference Books

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	S	S
CO2	Н	М	Н	S	Н
CO3	М	Н	S	М	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.Sharmila	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title : Master of Computer Science		puter Science
Course Code:	18PCS2E2	Title	Batch :	2018-2020
		ELECTIVE- II :	Semester	II
Hrs/Week:	5	Satellite Communication	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of satellites and satellite services.

K1	C01	To recollect application of techniques, tools and resources
K2	CO2	To understand applications of established communication methods to complex engineering problem solving
К3	CO3	To apply problem solving approaches to work challenges and make decisions using sound engineering methodologies
K4	CO4	To analyze High levels of technical competence in the field

CONTENTS	Hours
UNIT I Satellite Orbits : Kepler's Laws, Newton's law, orbital parameters, orbital perturbations, station keeping, geo stationary and non Geo-stationary orbits – Look Angle Determination-Limits of visibility –eclipse-Sub satellite point –Sun transit outage-Launching Procedures - launch vehicles and propulsion.	13
UNIT II Space Segment And Satellite Link Design: Spacecraft Technology- Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. Satellite uplink and downlink Analysis and Design, link budget, E/N calculation- performance impairments-system noise, inter modulation and interference, Propagation Characteristics and Frequency considerations-System reliability and design lifetime.	13
UNIT III Satellite Access: Modulation and Multiplexing: Voice, Data, Video, Analog – digital transmission system, Digital video Brocast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication, compression – encryption.	13
UNIT IV Earth Segment: Earth Station Technology Terrestrial Interface, Transmitter and Receiver, Antenna Systems TVRO, MATV, CATV, Test Equipment Measurements on G/T, C/No, EIRP, Antenna Gain.	13
UNIT V Satellite Applications: INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM,	13

Total Hours	65				
conferencing, Internet.					
services, Business TV(BTV), GRAMSAT, Specialized services - E -mail, Video					
(DBS)- Direct to home Broadcast (DTH), Digital audio broadcast (DAB)- Worldspace					
GPS, INMARSAT, LEO, MEO, and Satellite Navigational System. Direct Broadcast satellites					

Total Hours

*Italicized texts are for self study

Power point Presentations, Seminar, Quiz, Assignment, Case study

Text Books:

- 1. Dennis Roddy, 'Satellite Communication', McGraw Hill International, 4th Edition, 2006
- 2. Wilbur L. Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, 'Satellite Communication Systems Engineering', Prentice Hall/Pearson, 2007

Reference Books:

- 1. N.Agarwal, 'Design of Geosynchronous Space Craft, Prentice Hall, 1986
- 2. Bruce R. Elbert, 'The Satellite Communication Applications' Hand Book, Artech HouseBostan London, 1997
- 3. Tri T. Ha, 'Digital Satellite Communication', II edition, 1990.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	Н	М	Н	S
CO2	Н	М	Н	S	L
CO3	S	S	S	М	М
CO4	L	Н	Н	Н	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name:R.Deepa	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS2E3	Title	Batch :	2018-2020
		ELECTIVE- II :	Semester	II
Hrs/Week:	5	Antennas and Propagation	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of Antennas and its propagation.

K1	C01	To recollect fundamental antennas and propagation parameters and its terminology
K2	CO2	To understand the basic concepts of electromagnetic wave radiation and reception
КЗ	CO3	To apply the fundamentals to design different types of antennas
K4	CO4	To analyze the basic skills necessary for designing a wide variety of practical
		antennas and antenna arrays

CONTENTS	Hours
UNIT I Antenna Basics: Introduction, basic Antenna parameters, patterns, beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective height, bandwidth, radiation, efficiency, antenna temperature and antenna filed zones.	13
UNIT II Point Sources and Arrays: Introduction, point sources, power patterns, power theorem, radiation intensity, filed patterns, phase patterns. Array of two isotropic point sources, non-isotropic but similar point sources, principles of pattern multiplication, examples of pattern synthesis by pattern multiplication, non-isotropic point sources, broad side array with non unipolar amplitude distribution, broad side versus end fire array, direction of maxima fire arrays of n isotropic point sources of equal amplitude and spacing.	13
UNIT III Electric Dipoles And Thin Linear Antennas: Introduction, short electric dipole, fields of a short dipole, radiation resistance of short dipole, radiation resistances of lambda/2 Antenna, thin linear antenna, micro strip arrays, low side lobe arrays, long wire antenna, folded dipole antennas.	13
UNIT IV Loop, Slot, Patch And Horn Antenna: Introduction, small loop, comparison of far fields of small loop and short dipole, loop antenna general case, far field patterns of circular loop, radiation resistance, directivity, slot antenna, Balinet's principle and complementary antennas, <i>impedance of complementary and slot antennas, patch antennas, horn antennas, rectangular horn antennas.</i>	13
UNIT V Antenna Types: Helical Antenna, Yagi-Uda array, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna.	13
Total Hours	65
*Italicized texts are for self study	

Power point Presentations, Seminar, Brain storming

Text Books:

1. Harish and Sachidananda, 2007, "Antennas and Wave Propagation" Oxford Press

Reference Books:

- 1. Balanis.C.A, 1997, "Antenna Theory Analysis and Design", 2nd Edition, John Wiley
- Sineon. R.Saunders, 2003, "Antennas and Propagation for Wireless Communication Systems", John Wiley

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	М	Н	S
CO2	Н	М	Н	S	Н
CO3	М	S	S	М	М
CO4	М	Н	Н	L	Н

Course Designed by Verified by HOD		Checked by	Approved by	
Name and Signature	Name with Signature	CDC	COE	
Name: P. Jayapriya	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS2E4	Title	Batch :	2018-2020
		ELECTIVE- II:	Semester	II
Hrs/Week:	5	Remote Sensing and Sensors	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of remote sensing and sensors.

K1	C01	To remember and explain at a basic level fundamental physical principles of remote
		sensing, including the electromagnetic spectrum; the emission, scattering, reflection,
		and absorption of electromagnetic (EM) radiation
K2	CO2	To understand key applications of land, marine, aquatic, and atmospheric remote
		sensing and relate them to the properties of historical, current, and planned remote
		sensing instruments, approaches, and datasets
K3	CO3	To apply mathematical relationships (at a pre-calculus level) describing fundamental
		physical, geometric, and computational principles relevant to remote sensing
K4	CO4	To analyze proficiency and conceptual understanding in using software or manual
		techniques to carry out remote sensing image processing and analysis through a series
		of laboratory exercises and reports

CONTENTS	Hours
 UNIT I Basics of Remote Sensing: Principles of remote sensing, History of Remote sensing, remote sensing in India, <i>Electromagnetic Radiation and Electromagnetic Spectrum</i>. EMR quantities: Nomenclature and Units, Thermal Emission of Radiation, Radiation Principles (Plank's Law, Stephen Boltezman law), Interaction of EMR with the Earth Surface (Wien's displacement law, Kirchoffs Law), Spectral signature, Reflectance characteristics of Earths cover types, Remote sensing systems. 	13
UNIT II Platforms and sensors: Platforms, Remote sensing sensors, resolutions Across track and along the track scanning, Optical sensors, Thermal scanners, Microwave sensing radar, satellite missions, Landsat series, SPOT series, IRS satellite series, IKNOS.	13
 UNIT III Microwave Remote Sensing: Airborne and Space borne radar systems basic instrumentation. System parameters - <i>Wave length, Polarization, Resolutions, Radar geometry, Target parameters</i> - Back scattering, Point target, Volume scattering, Penetration, Reflection, Bragg resonance, Cross swath variation. Speckie radiometric calibration: Radar - Grametry - Introduction, Mosaicing Stereoscope. Application: Geology, Forestry, Land use, Soils etc. Future trends and Research. 	13
UNIT IV	13
Thermal Imaging system: Introduction - IR region of the Electromagnetic spectrum, Atmospheric transmission Kinetic and radiant temperature. Thermal properties of materials	
Aunospheric transmission, Kinetic and radiant temperature, Therman properties of materials,	
	urus
--	----------------
Emissivity, Radiant temperature. Thermal conductivity. Thermal capacity, thermal inertia,	
apparent thermal inertia, Thermal diffusivity. IR - radiometers, Airborne and Satellite TTR	
scanner system, Characteristics of IR imagesi) Scanner distortion, ii) image irregularities,	
iii) Film density and recorded iv)Temperature ranges	
Effects of weather on images: i) Clouds, ii) Surface winds, iii) Penetration of smoke	
plumes, Interpretation of thermal imagery, Advantages of Thermal imagery.	
UNIT V	
Meteorological satellites: Meteorological satellite characteristics and their orbits, TIROS,	12
NIMBUS, NOAA, TIROS N, SEASAT, GOES, METEOSAT, INSAT, Measurement of	15
Earth and Atmospheric energy and Radiation budget parameters from satellites.	
Total Hours	65
	00
*Italicized texts are for self study	
* <i>Italicized</i> texts are for self study Power point Presentations, Seminar , Assignment	
* <i>Italicized</i> texts are for self study Power point Presentations, Seminar , Assignment Text Books:	
 *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition 	on,
 *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall 	on,
 *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall Davis.S.M, Swain.P.H, "Remote Sensing: The quantitative approach", McGraw Hill 	on,
 *Italicized texts are for self study Power point Presentations, Seminar, Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall Davis.S.M, Swain.P.H, "Remote Sensing: The quantitative approach", McGraw Hill Reference Books: 	on,
 *Italicized texts are for self study Power point Presentations, Seminar, Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall Davis.S.M, Swain.P.H, "Remote Sensing: The quantitative approach", McGraw Hill Reference Books: Barrett. E.C, Curtis.L.F, "Introduction to Environmental Remote Sensing", Chapman and 	on, I Hall,
 *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall Davis.S.M, Swain.P.H, "Remote Sensing: The quantitative approach", McGraw Hill Reference Books: Barrett. E.C, Curtis.L.F, "Introduction to Environmental Remote Sensing", Chapman and London 	on, I Hall,
 *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: Travelt.W, "Imaging Radar for Resource Survey: Remote Sensing Applications", 3rd Edition Chapman & Hall Davis.S.M, Swain.P.H, "Remote Sensing: The quantitative approach", McGraw Hill Reference Books: Barrett. E.C, Curtis.L.F, "Introduction to Environmental Remote Sensing", Chapman and London Floyd, F. Sabins, 1978, "Remote Sensing Principles and Interpretation", Freeman and Co., 	on, Hall,

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	Н	S	Н	S
CO2	S	Н	Н	М	L
CO3	Н	М	L	Н	М
CO4	Н	Н	S	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. A. Kanagaraj	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

ELECTIVE III

S.No	SUBJECT CODE	TITLE
1	18PCS3E1	SOFT COMPUTING
2	18PCS3E2	MACHINE LEARNING
3	18PCS3E3	TELECOMMUNICATION SYSTEMS
4	18PCS3E4	PARALLEL COMPUTING

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS3E1	Title	Batch :	2018-2020
		ELECTIVE – III : Soft	Semester	III
Hrs/Week:	5	Computing	Credits:	05

Course Objective

On successful completion of the course the students should understand the concepts of Neural Networks, architecture, functions and various algorithms involved. 3. Fuzzy Logic, Various fuzzy systems and their functions.

K1	C01	To remember soft computing techniques and their applications.
K2	CO2	To understand perceptrons and counter propagation networks and fuzzy systems.
К3	CO3	To apply soft computing techniques to solve real life problems.
K4	CO4	To analyze various neural network architectures.

CONTENTS	Hours
UNIT I Fundamentals of Neural Networks: Basic concepts of Neural Networks –Human Brain – Model of an Artificial Neuron – Neural Network Architectures – Characteristics of Neural Networks – Learning methods - Easy Neural Network Architectures – Some Application domains.	13
UNIT II Back propagation Networks: <i>Architecture of a Back-Propagation Network</i> – Back propagation Learning- Effect of Tuning parameters of the Back Propagation Neural Network – Selection of various parameters in BPN.	13
UNIT III Adaptive Resonance Theory: Introduction: Cluster Structure, Vector Quantization, Classical ART Networks, Simplified ART Architecture. ART1: Architecture of ART1–Special features of ART1 Models-ART1 Algorithms. ART2: Architecture of ART2– ART2 Algorithms.	13
UNIT IV Fuzzy Set Theory: Fuzzy versus crisp, Crisp sets: Operation on Crisp sets- Properties of Crisp Sets-Partition and Covering. Fuzzy sets: Membership Function – Basic fuzzy set Operations-properties of fuzzy sets. Crisp relations: <i>Cartesian product</i> -Other Crisp Relations-Operations on Relations. Fuzzy relations: Fuzzy Cartesian product- Operations on Fuzzy Relations.	13
UNIT V Fuzzy Systems: Crisp logic: Laws of Propositional Logic-Inference in propositional Logic. Predicate logic: Interpretations of Predicate Logic Formula – Inference in Predicate Logic. Fuzzy logic: Fuzzy Quantifiers – Fuzzy Inference, Fuzzy rule based system –	13

Defuzzification. 65 *Italicized texts are for self study

Power point Presentations, Seminar, Assignment, Experience Discussion, Brain storming

Text Books

2. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy logic, and Genetic Algorithms Synthesis and Applications, PHI, 2005.

Reference Books

- 1. James A. Freeman, David M. Skapura, "Neural Networks-Algorithms, Applications, and Programming Techniques", Pearson Education.
- 2. Fredric M. Ham, IvicaKostanic, "Principles of Neuro computing for science of Engineering", TMCH.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	S	М	Н	S
CO2	Н	М	Н	S	Н
CO3	L	S	S	S	М
CO4	М	Н	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.Sharmila	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

M.Sc Computer Science

Effective from the year 2018 onwards

Programme code:	M.Sc	Programme Title :	Master of Computer Science	
Course Code:	18PCS3E2	Title	Batch :	2018-2020
		ELECTIVE – III: Machine	Semester	III
Hrs/Week:	5	Learning	Credits:	05

Course Objective

On Successful completion of the course the students should gain knowledge on application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments.

K1	C01	To remember main areas of Machine Learning: supervised and unsupervised.
K2	CO2	To understand a wide variety of learning algorithms.
КЗ	CO3	To apply a variety of learning algorithms to data
K4	CO4	To analyze how to perform evaluation of learning algorithms and model selection

CONTENTS	Hours
UNIT I	
MACHINE LEARNING FOUNDATIONS - Introduction-Bayesian modeling-Cox Jaynes	13
axioms- Bayesian inference and induction- models structures examples.	
UNIT II	
MACHINE LEARNING ALGORITHMS - Dynamic programming- EM/ GEM	12
algorithms-Markov chain Monte carlo methods- simulated annealing genetic algorithm-	15
Neural networks.	
UNIT III	
APPLICATIONS - Sequence coding- correlations- Prediction: secondary structure, signal	12
peptides and cleavage sites-applications for DNA & RNA nucleotide sequences-	13
Performance evaluation.	
UNIT IV	
Introduction- likelihood & Basic algorithms- Learning algorithms- Applications: general	13
aspects, proteins, DNA and RNA.	
UNIT V	
Models for phylogeny-substitution probabilities-Data likelihood-optimal trees- modeling for	13
array data.	
Total Hours	65
*Italicized texts are for self study	
Power point Presentations, , Seminar, Assignment	
Text Books:	
1. Andrea Isoni, 2016, "Machine Learning for Web", Kindle Edition.	
2. Matthew Krik, 2014, "Thought Machine Learning", Kindle Edition.	

M.Sc Computer Science

Reference Books:

- 1. Steffen Schulze-Kremer, "Molecular Bioinformatics: Algorithms and Applications", Walter de Gruyter, 2013.
- 2. Yi-Ping Phoebe. Chen, "Bioinformatics Technologies", Springer, 2015.
- 3. Zheng Rong Yang, "Machine Learning Approaches to Bioinformatics" (Science, Engineering, and Biology Informatics), World Scientific Publishing Company; 1 edition 2010.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	S	S	М
CO2	Н	М	Н	Н	L
CO3	Н	М	Н	М	Н
CO4	М	S	Н	Н	S

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr.M.Sakthi	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Effective from the year 2018 onwards

M.Sc Computer Science

Programme code:	M.Sc	Programme Title :	Master of Co	mputer Science
Course Code:	18PCS3E3	Title	Batch :	2018-2020
		ELECTIVE – III:	Semester	III
Hrs/Week:	5	Telecommunication Systems	Credits:	05

Course Objective

On successful completion of the course the students have basic understanding of the concepts and principles of optical fibre communications, line transmission systems, satellite communication systems, public switched telephone networks, teletraffic theory, digital transmission system standards, network planning and principle of digital switching systems.

K1	C01	To remember the concepts and principles of optical fibre communications, line
		transmission systems, satellite communication systems.
K2	CO2	To understand how to manage public switched telephone networks, teletraffic theory,
		digital transmission system standards, network planning and principle of digital switching
		systems.
K3	CO3	To deploy measurements and experiments in laboratory on actual components, devices,
		equipment and systems in telecommunications
K4	C04	To interpret communication equipment for the technical functionality.

CONTENTS	Hours
UNIT I	
PSTN TECHNOLOGY Introduction: History of telecommunications - various networks used to	
transmit voice, video and data signals - media used to convey telecommunication signals - basics of	
the three major voice communication technologies - basics of PC- based voice communication	
systems (CTI) - basics of LAN & WAN - telecommunication standards. PSTN Technology:	13
Difference between simplex, half-duplex and duplex transmissions - basic understanding of	
telephone set - history and evolution of Central Exchange Switching - Operator Switch Boards	
(PBX) - intraoffice and interoffice calls - Extended Area Service (EAS) - circuit switching, packet	
switching & TDM switching – DTMF signaling – dial register – in-band & out-of- band signaling.	
UNIT II	
CUSTOMER-PROVIDED EQUIPMENTS - Working of telephone - sidetone - ringers - DTMF	
dial - feature phone, proprietary telephone, hands-free phone, speaker phones, ISDN telephones -	13
key systems - CBXs - private-in-line network and a software-defined network - station features -	
Telecommunication Application Program Interface (TAPI).	
UNIT III	
ELECTRONICS FOR TELECOMMUNICATIONS - Multiplexing: TDM - FDM - AM technology	
- WDM & DWDM - PAM & PCM - TDM using PAM & PCM - STDM - various levels of	13
SONET - DS0 & DS1 systems. Analog & Digital signals: Characteristics of analog and digital	15
signals - conversion of analog voice signal into a digital signal - conversion of PSTN into a digital	
network – digital data coding techniques – bandwidth vs power loss.	
UNIT IV	13
DATA COMMUNICATIONS & NETWORKING - Data Communications: Various ways to	13

M.Sc Computer Science Effective from the year 20	18 onwards
connect DTE & DCE - serial vs parallel transmission - UART, baud rates and MO	DEM –
asynchronous vs synchronous transmission - error detection & error correction techniques	s – SS7
networks - ISDN - ADSL. Data Networking: LANs & LAN architectures - OSI model -	bridged
LAN - LAN medium - NIC - packets, frames - PSN - STDM - PDN -	Packet
Assembler/Disassembler - switched vitual circuit vs permanent virtual circuit - X.25	packet
network – LAPB – frame relay – ATM, Voice-Over ATM.	
UNIT V	
MOBILES PHONES AND WIRELESS COMMUNICATIONS - Mobile Phones: Evolu	ition of
mobile telephone technology - DAMPS vs GSM vs CDMA - PCS Networks. V	Vireless 12
Communication: Analog & Digital access - WAP, WLANs, Microwave LANs, radio	LANs, 13
infrared LANs, WLL technologies - Satellite communications - satellite earth sta	ation –
geosynchronous satellite, LEO & MEO satellites - international wireless communication sys	tems.
Total Hours	65
Total Hours *Italicized texts are for self study	65
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment	65
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books:	65
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In	ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education.	ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition 2008	ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition, 2008. 2. Any A. Gokhala, "Introduction to Telecommunications", Delmar, 2nd adition, 2008.	ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition, 2008. 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 2008.	65 ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition, 2008. 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 200 Reference Books:	65 ternet", Pearson
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition, 2008. 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 200 Reference Books: 1. Pete Moulton, Jason Moulton, "The Telecommunication Survival Guide", Peter Moulton, Survival Guide	65 ternet", Pearson 05. arson Education,
Total Hours *Italicized texts are for self study Power point Presentations, Seminar , Assignment Text Books: 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and In Education, 2 nd edition, 2008. 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 200 Reference Books: 1. Pete Moulton, Jason Moulton, "The Telecommunication Survival Guide", Pe 2001.	65 ternet", Pearson 05. arson Education,

2. Roger L. Freeman, "Telecommunication System Engineering", Wiley-India, 4th edition, 2004.

MAPPING	
---------	--

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	S
CO2	М	Н	М	S	Н
CO3	М	S	S	М	Н
CO4	Н	Н	Н	S	М

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: N.Karthikeyan	Name: Dr.M.Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title : Master of Computer Science		puter Science
Course Code:	18PCS3E4	Title	Batch :	2018-2020
		ELECTIVE – III :	Semester	III
Hrs/Week:	5	Parallel Computing	Credits:	05

Course Objective

The objective of this course is to make student aware of entirely new paradigm of parallel programming and computing.

K1	C01	To recollect critical methods and techniques related to parallel computing.
K2	CO2	To understand the optimization of serial programs and algorithms within
		computational science.
K3	CO3	Apply hardware, algorithm, and programming of parallel systems
K4	CO4	To analyze how large-scale parallel systems are architectured and how massive parallelism are implemented in accelerator architectures

CONTENTS	Hours
UNIT I	
Introduction to Parallel Computing: Motivating Parallelism, The Computational Power	
Argument - from Transistors to FLOPS, The Memory/Disk Speed Argument, The	
Data Communication Argument, Scope of Parallel Computing, Applications in	
Engineering and Design, Scientific Applications, Commercial Applications,	
Applications in Computer Systems, Organization and Contents of the Text, Parallel	
Programming Platforms: Implicit Parallelism: Trends in Microprocessor Architectures,	
Pipe lining and Superscalar Execution, Very Long Instruction Word Processors,	13
Limitations of Memory System Performance, Improving Effective Memory Latency	
Using Caches, Impact of Memory Bandwidth, Alternate Approaches for Hiding	
Memory Latency, Tradeoffs of Multithreading and Prefetchin, Dichotomy of Parallel	
Computing Platforms, Control Structure of Parallel Platforms, Communication	
Model of Parallel Platforms, Physical Organization of Parallel Platforms, Architecture of an	
Ideal Parallel Computer, Interconnection Networks for Parallel Computers, Network	
Topologies, Evaluating Static Interconnection Networks.	
UNIT II	
Principles of Parallel Algorithm Design: Preliminaries, Decomposition, Tasks, and	
Dependency Graphs, Granularity, Concurrency, and Task-Interaction, Processes and	
Mapping, Processes versus Processors, Decomposition Techniques, Recursive	
Decomposition, Data Decomposition, Exploratory Decomposition, Speculative	13
Decomposition, Hybrid Decompositions, Characteristics of Tasks and	13
Interactions, Characteristics of Tasks, Characteristics of Inter-Task Interactions, Mapping Te	
chniques for Load Balancing, Schemes for Static Mapping, Schemes for Dynamic	
Mapping, Methods for Containing Interaction Overheads, Maximizing Data Locality,	
Minimizing Contention and Hot Spots, Overlapping Computations with Interactions,	

M.Sc Computer Science Effective from the year 2018 onward	ds			
Replicating Data or Computations, Using Optimized Collective Interaction Operations,				
Overlapping Interactions with Other Interactions, Parallel Algorithm Models.				
UNIT III				
Analytical Modeling of Parallel Programs: Performance Metrics for Parallel Systems,				
Execution Time, Total Parallel Overhead, Speedup, Efficiency, Cost, The Effect of				
Granularity on Performance, Scalability of Parallel Systems, Scaling Characteristics of				
Parallel Programs, The Isoefficiency Metric of Scalability, Cost – Optimality and the				
Isoefficiency Function, A Lower Bound on the Isoefficiency Function, The Degree of				
Concurrency and the Isoefficiency Function, Minimum Execution Time and Minimum				
Cost-Optimal Execution Time, Asymptotic Analysis of Parallel Programs, Other				
Scalability Metrics.				
UNIT IV				
Programming Shared Address Space Platforms: <i>Thread Basics</i> , Why Threads? The POSIX				
Thread API, Thread Basics: Creation and Termination, Synchronization Primitives in Pthrea				
ds, Mutual Exclusionfor Shared Variables, Condition Variables for Synchronization,				
Controlling Thread and Synchronization Attributes, Attributes Objectsfor Threads,				
Attributes Objects for Mutexe, Thread Cancellation, Composite Synchronization	12			
Constructs, Read-Write Locks, Barriers, Tips for Designing Asynchronous Programs,	15			
OpenMP: a Standard for Directive Based Parallel Programming, The OpenMP				
Programming Model, Specifying Concurrent Tasks in OpenMP, Synchronization				
Constructs in OpenMP, Data Handling in OpenMP, OpenMP Library Functions,				
Environment Variables in OpenMP, Explicit Threads versus OpenMP Based				
Programming.				
UNIT V				
Programming: Overview of Dynamic Programming, Serial Monadic DP Formulations,				
The Shortest -Path Problem, The Oil Knapsack Problem, Nonserial Monadic DP				
Formulations, The Longest-Common- Subsequence Problem, Serial Polyadic DP				
Formulations, Floyd's All-Pairs Shortest-Paths Algorithm, Non serial Polyadic DP	10			
Formulations, The Optimal Matrix-Parenthesization Problem, Fast Fourier Transform:	13			
The Serial Algorithm, The Binary - Exchange Algorithm, A Full Bandwidth				
Network, Limited Bandwidth Network, Extra Computations in Parallel FFT, The				
Transpose Algorithm, Two-Dimensional Transpose Algorithm, The Generalized				
Transpose Algorithm.				
Total Hours	65			
*Italicized texts are for self study				
Power point Presentations, Seminar, Assignment				
Text Books:				
1. Introduction to Parallel Computing, AnanthGrama, Pearson Education.				
Reference Books:				
1. Fundamental of Paralle Processing, Harry F. Jordan, Gita Alaghband, Pearson Education.				
2. Parallel Programming, Michael Allen, Barry Wilkinson, Pearson Education.				

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	Н	S
CO2	Н	М	Н	S	Н
CO3	М	S	S	М	М
CO4	М	Н	Н	Н	Н

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: S.S.Shanthi	Name: Dr.M. Sakthi	Name: Dr. M. Durairaju	Name: Dr. R. Muthukumaran
Signature:	Signature:	Signature:	Signature: