Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 01	Semester: I
Title	: Classical Dynamics	Semester. 1
Hrs/Week:	5	Credit: 4
Objectives	➤ To understand the Lagrangian and Hamiltonian	
	formulations of Mechanics and to apply them to	
	simple systems.	
	➤ To learn how does the Canonical transformation	
	lead to Hamilton Jacobi theory.	
	➤ To understand the concepts of Rigid body	
	dynamics, Small oscillations and Nonlinear	
	dynamics.	

Unit	Content	Hrs
	LAGRANGIAN FORMALISM Constraints and Degrees of freedom - Generalized coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, Force & Potential - Variational techniques and Euler's Lagrange differential equation - Hamilton's Variational	
I	principle - Lagrange's equation of motion from Hamilton's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation of motion: Linear harmonic oscillator - Simple pendulum - Isotropic oscillator - Particle moving under central force - Conservation theorems: Cyclic coordinates - Conservation of	12
	Linear momentum - Conservation of energy	
II	HAMILTONIAN FORMALISM Phase space - Hamiltonian - Hamilton's canonical equation of motion -Significance of H - Deduction of canonical equation from Variational principle -Applications of Hamilton's equation of motion: Simple pendulum - Particle in a central field of force - Hamiltonian of a Charged particle in an electromagnetic field - Principle of least action and proof - Canonical transformations - Generating function and different forms - Poisson brackets: Definition - Equation of motion in Poisson bracket form - Angular momentum and Poisson bracket relations	12
III	HAMILTON JACOBI THEORY Hamilton Jacobi method: H J partial differential equation - Solution of H J equation - Discussion on Hamilton's principle function - Solution of harmonic oscillator problem by H J method - Particle falling freely - H J equation for Hamilton's characteristic function - Kepler's problem solution by H J method - Action and Angle variables - Solution of harmonic	12

	oscillator problem by action angle variable method	
IV	RIGID BODY DYNAMICS & SMALL OSCILLATIONS Euler's theorem - Euler's angles - Rotational kinetic energy of a rigid body - Equations of motion for a rigid body - The motion of symmetric top under the action of gravity - Types of equilibria: Stable & Unstable equilibrium - Formulation of the problem: Lagrange's equations for small oscillations - Properties of T,V and ω - Normal coordinates & normal frequencies of vibration - Systems with few degrees of freedom: Free vibrations of linear triatomic molecule	12
V	NONLINEAR DYNAMICS Dynamical systems: Linear & Nonlinear forces - Mathematical Implications of nonlinearity: Linear & Nonlinear systems, Linear superposition principle - Working definition of nonlinearity - Effects of Nonlinearity - Linear Oscillators: Linear Oscillators and Predictability: Free Oscillations, Damped Oscillations, Damped & Forced Oscillations - Nonlinear Oscillators: Damped and Driven nonlinear oscillators: Free Oscillations, Damped Oscillations, Primary Resonance & Jump Phenomenon, Secondary Resonances - Nonlinear Oscillations and Bifurcations	12

- Herbert Goldstein, (2001). *Classical Mechanics*. Addison Wesley Publishing Company, (Units I IV).
- Gupta S.L. Kumar V. Sharma R.C. (2010). *Classical Mechanics*. Pragati Prakashan, Meeret, (Units I IV).
- Laxmanan M. Rajasekar S. (1978). *Nonlinear Dynamics*. Springer Verlag, Distributors: Prism Books Pvt Ltd, (Unit V).

Reference Books

• Rana N.C. Joag P.S. (2001). Classical Mechanics. Tata McGraw Hill, New Delhi.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 02 / 10 PPS 02	Semester: I
Title :	Quantum Mechanics-I	Semester. 1
Hrs/Week:	5	Credit: 4
Objectives	> To understand the basic concepts and	
	formalisms in Quantum mechanics.	
	➤ To solving Schrödinger wave equation to simple systems.	
	➤ To understand and apply various approximate methods to solve time independent problem.	
	To understand the quantum mechanical treatment of angular momentum and systems of identical particles.	
	➤ To analyse scattering problems using Born- approximation and Partial wave techniques.	

Unit	Content	Hrs
I	MATRIX FORMULATION OF QUANTUM THEORY Matrix algebra — Linear vector space — Hilbert space — orthonormality property of basis vectors — Schwartz inequality — Linear operator — Eigen functions and Eigen values — Hermitian operator — Schmidt orthogonalisation procedure — Postulates of Quantum mechanics — Matrix representation of an operator — Column representation of the wave function — Normalisation and orthogonality of wavefunctin in matrix form — Product of two linear transformations — Dual space — Change of basis, similarity and unitary transformations.	12
II	STATIONARY STATES Schrödinger's equation in Cartesian and Spherical coordinates - Three dimensional harmonic oscillator - The rigid rotator with free axis - Eigen function for the rotator - Rigid rotator in a fixed plane - Motion of a particle in a three dimensional square well Potential - The hydrogen atom: Equations and Solutions of φ, θ and R -Heisenberg, Schrödinger and Interaction pictures.	12
III	TIME INDEPENDENT PERTURBATION THEORY Perturbation theory for a system with Non-degenerate and Degenerate levels - Stark effects in Hydrogen and two electron atoms - The variation method and its application to Hydrogen molecule - WKB approximation and its validity – Application to barrier penetration.	12
IV	ANGULAR MOMENTUM AND IDENTICAL PARTICLES Algebra of the angular momentum vector components - Ladder	12

	operators - Eigen value spectrum and Matrix representation - Angular momentum operator - Addition of two angular momenta and CG coefficients - Application to two electron systems - Parity operator, Symmetric and Antisymmetric wave functions for a system of n identical particles - Pauli's exclusion principle	
V	SCATTERING THEORY Scattering amplitude and scattering cross section - Integral equation in terms of Green's function - Born approximation and its validity - Application to screened coulomb potential - Partial wave analysis - Optical theorem - Application to low energy two nucleon scattering	12

- Gupta, Kumar, Sharma, *Quantum Mechanics*. Pragathi Prakash Publications (Unit I).
- Satya Prakash, (2007). *Advanced Quantum Mechanics*. Kedar nath Ram Nath, Fifth revised edition, (Unit -II).
- Aruldhas, (2002). *Quantum Mechanics*. Prentice Hall India Company Pvt Ltd, (Units I, III & V).
- Gupta S.L. Gupta I.D. (1982). *Advanced Quantum Theory And Fields*. S Chand and Company Ltd, (Unit IV).

- Mathews, Venkatesan, (2002). *A Text Book Of Quantum Mechanics*. Tata McGraw Hill Company Ltd.
- Atkins P.W. (1984). *Quantum Mechanics*. Oxford University Press.

Compiled by Name with Signature	Verified by HOD Name with Signature	СОЕ	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code	: 13 PPS 03	Semester: I
Title	: Mathematical Physics	Semester. 1
Hrs/Week:	5	Credit: 4
Objectives	➤ To become familiar with the evaluation of	
	residues of complex functions and definite	
	integrals.	
	➤ To understand the concepts of special functions	
	as solutions of linear differential equations.	
	➤ To provide mathematical foundation in Partial	
	differential equations, Fourier transforms and	
	Dirac delta functions	

Unit	Content	
I	SPECIAL FUNCTIONS Legendre differential equations and Legendre functions - Generating function of Legendre polynomial - Orthogonal properties of Legendre's polynomials - Recurrence formulae for $P_n(x)$ - Bessel's differential equations: Bessel's functions of first kind - To solve $J_{1/2}(x)$, $J_{-1/2}(x)$, $J_{3/2}(x)$ and $J_{-3/2}(x)$ - Recurrence formulae for $J_n(x)$ - Generating function of $J_n(x)$ - Hermite differential equation & Hermite polynomials - Generating function of Hermite polynomials - Recurrence formulae for Hermite polynomials	12
II	COMPLEX VARIABLES Analytic function – The necessary and sufficient conditions for f(z) to be analytic: Cauchy Riemann Differential equations in polar form – Cauchy's integral theorem(Cauchy proof only) - Cauchy's integral formula - Taylor's series and Laurent's series - Singularities of an analytic function - Residues and their evaluation - Cauchy Residue theorem - Evaluation of definite integrals of Trignometric functions of cosθ and sinθ.	12
III	LAPLACE & WAVE EQUATIONS Solution of Laplace's equation in Cartesian coordinates - Examples of Two dimensional steady flow of heat - Solution of Laplace's equation in two dimensional cylindrical coordinates - Problems - Solution of Laplace's equation in Spherical polar coordinates - Problems - Diffusion equation or Fourier equation of heat flow - Solution of heat flow equation - Problems.	12
IV	FOURIER INTEGRAL AND TRANSFORMATIONS Fourier Integral – Problems – Fourier's Transform: Infinite Fourier sine and cosine transforms - Properties of Fourier's	12

	Transform: Addition theorem, Similarity theorem, Shifting property, Convolution theorem and Parseval's theorem – Problems – Finite Fourier sine and cosine transforms - Problems	
V	TENSORS, BETA AND GAMMA FUNCTIONS Transformation of co-ordinates - Summation convention - Kronecker delta symbol - Generalised Kronecker delta - Scalars, contravariant and covariant vectors - Tensors of higher ranks - Algebraic operations of tensors - Quotient law - Symmetric and skew symmetric tensors - Beta and Gamma functions: Symmetry property of beta function - Evaluation of beta function - Transformation of beta function - Evaluation of Gamma function - Transformation of Gamma function - Relation between beta and gamma function - Evaluation of Miscellaneous integrals	12

• Sathyaprakash, (2013). *Mathematical Physics*. Sultan chand & sons, (Units I – V).

- Gupta B.D. (1989). *Mathematical Physics*. Vikas publication house.
- Louis A.Pipes, Lawrence R. Harvill, (1970). *Applied Mathematics For Engineers & Physicsts*. McGraw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). Mathematical Physics. Wiley Eastern Limited.
- Bose R.K. Joshi M.C. (1984). *Methods Of Mathematical Physics*. Tata McGraw-Hill.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 04 / 10 PPS 04	Semester: I
Title :	Electronics	Semester. 1
Hrs/Week:	5	Credit: 5
Objectives	➤ To understand the action of semiconductor devices, amplifiers and oscillators.	
	To know the construction, action and applications of operational amplifier	

Unit	Content	Hrs
I	SEMICONDUCTOR DEVICES Semiconductor and Energy bands - PN Junction diode and Zener diode - Characteristics - Zener diode as a voltage regulator - Regulated power supply - Transistor & Action - Characteristics - CE, CB and CC configurations - Relation between α , β and γ - Load line & Operating point - Stability - Voltage divider Self bias - JFET, Depletion MOSFET and Enhancement MOSFET - Characteristics - UJT and Relaxation Oscillator - SCR & SCR as a switch - Triac - Tunnel diode - Varactor diode	12
II	AMPLIFIERS Principle of amplification - Classification of amplifiers - Common base, Common emitter RC coupled amplifiers and Frequency response - Hybrid parameters and Small signal analysis - Emitter follower - Concept of Power amplification - Classification of Power amplifiers - Transformer coupled class A Power amplifier - Calculation of Efficiency - Class B Push pull amplifier - Complementary symmetry Push pull amplifier - Efficiency calculation - Biasing of FET amplifier - Common source FET amplifier - Common drain FET amplifier	12
III	FEEDBACK AMPLIFIER & OSCILLATORS Concept of Feedback - Negative feedback - Forms of negative feedback - Effect of negative feedback on bandwidth, distortion, noise and stability - Positive feedback - Barkhausen criterion - Generation of sinusoidal waves by a tuned LC circuit - Classification of oscillators - Hartley oscillator - Colpitts oscillator - Phase shift oscillator - Weinbridge oscillator - Frequency calculation - Astable, Monostable and Bistable Multivibrators	12
IV	OPERATIONAL AMPLIFIER Typical stages of an Op Amp - Differential amplifier (using transistor) and Classification - Common mode and Differential mode operations - CMRR - Realization of constant current source - Integrated circuit of operational amplifier - Ideal Op	12

	Amp and characteristics - Parameters of Op Amp (Input offset voltage, offset current, bias current and slew rate) - Inverting Op Amp - Non inverting Op Amp - Differential Op Amp - A/D converter - D/A converter	
V	OPERATIONAL AMPLIFIER Phase changer - Scale changer - Adder - Averager - Subtractor-Integrator - Differentiator - Solving differential equation - Comparator - Window detector - Schmitt trigger - Voltage follower - Voltage to current converter - Sample and hold circuit - Logarithmic amplifier - Constant current source	12

- Norman Lurch, (1981). Fundamentals Of Electronics. John Wiley & Sons, (Units I V).
- Swaminathan Mathu, (1985). *Electronics Circuits And Systems*. 1st Edition, Howard W.Sams & Co, (Units I, IV & V).
- Bhargowa N.N. Kulshreshtha D.C. Gupta S.C. (2001). *Basic Electronics & Linear Circuits*. 32nd Reprint, Tata Mc Graw-Hill Publishing Company Limited, (Units I III).

- Salivahanan S. Suresh kumar N. Vallavaraj A. (2003). *Electronic Devices & Circuits*. 10th Reprint, Tata McGraw Hill Publishing Company Limited.
- Robert F.Coughilin, (2001). *Operational Amplifiers & Linear Integrated Circuits*. 6th Edition, Pearson Education Inc.

Compiled by Name with Signature	Verified by HOD Name with Signature	СОЕ	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code: 13 PPS 05		Camastan I
Title :	Subject Viva Voce - I	Semester: I
Credit :	2	

Department	Physics	
Course	MSc Physics	Effective from the
		year: 2013
Subject Code:	13 PPS 11	Semester: I & II
Title :	General Physics Lab I	Semester. 1 & 11
Hrs/Week:	4	Credit: 4
Objectives	> To become familiar with the techniques of	
	advanced General Experiments.	

Cycle	Content	Hrs
I	 Young's modulus - Elliptical fringes - Cornu's method Viscosity of a liquid - Mayor's oscillating disc Thermal conductivity - Forbe's method Temperature coefficient and band gap energy of a Thermistor Measurement of Spot size, Divergence & Wavelength of a Laser beam 	24
II	 Young's modulus - Hyperbolic fringes - Cornu's method Specific heat of a liquid - Ferguson's method λ, d λ & Thickness of FP etalon – Fabryperot Interferometer Rydberg's constant - Hydrogen spectrum Refractive index of a liquid & Absorption coefficient of transparent Material –Laser Source 	24
III	 Rydberg's constant - Solar spectrum Hall effect in Semiconductors Study of Birefringence - Channel spectrum method or Diffraction - Hartmann's Interpolation Stefan's constant Biprism - Determination of λ of monochromatic source & thickness of a transparent sheet 	24

- Worsnop, Flint, (1971). *Advanced Practical Physics*. Asia Publishing house.
 Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11th Edition Pragati Prakashan.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Physics	
MSc Physics	Effective from
	the year: 2013
13 PPS 12	Semester: I &
Electronics Lab I	II
4	Credit: 4
➤ To understand the action of semiconductor devices, amplifiers and oscillators.	
	MSc Physics 13 PPS 12 Electronics Lab I 4 To understand the action of semiconductor

Cycle	Content	Hrs	
	1. CRO - Familiarization: Lissajous figures, Measurement		
	of Voltage, Phase and Frequency		
ī	2. I.C - Regulated power supply	24	
1	3. RC coupled amplifier - Double stage	24	
	4. Feedback amplifier		
	5. FET amplifier - Common Source		
	1. Emitter follower		
	2. UJT - Characteristics		
II	3. FET amplifier - Common Drain	24	
	4. Phase shift Oscillator using opamp		
	5. Power amplifier - Push Pull		
	1. SCR characteristics		
III	2. Astable Multivibrator using 555 timer IC and Op amp		
111	3. Power amplifier - Complementary symmetry	24	
	4. UJT - Relaxation Oscillator	∠ '1	
	5. Wave shaping circuits - Differentiator, Integrator,		
	Clipper and Clamper		

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd.
- Bhargowa N.N. (1984). *Basic Electronics And Linear Circuits*. Tata hill Publishing Co Ltd.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 06	Semester: II
Title :	Statistical Mechanics	Semester. II
Hrs/Week:	5	Credit: 4
Objectives	> To understand the concepts of Statistical	
	Mechanics and to apply these concepts to	
	various physical phenomena	

Unit	Content	Hrs
I	CONCEPTS OF STATISTICAL MECHANICS Phase space – Volume in Phase space – Ensembles – Micro, Canonical ensemble – Canonical ensemble – Grand canonical – ensemble – Uses of ensemble – Liouvilles theorem – Postulate of equal a priori probability – Statistical equilibrium – Thermal equilibrium – Mechanical equilibrium – Particle equilibrium – Thermo dynamical quantities : entropy – enthalpy – Helmholtz free energy – Gibb's free energy – Chemical potential – Connection between statistical and thermo dynamical quantities	12
II	CLASSICAL STATISTICS Microstates and Macro states – Classical Maxwell Boltzmann distribution law – Most probable speed, Mean speed, Mean square speed, Root mean square speed - Principle of equipartition energy – Gibbs paradox – Partition function and its correlation with thermodynamic quantities. Partition function and their properties, effect of shifting zero level of energy on partition function, mean energy, specific heat, entropy -comparison of ensemble – Equipartition theorem - Partition function for real gas.	12
III	QUANTUM STATISTICS Transition from classical statistical Mechanics to Quantum Statistical Mechanics – Indistinguishability in quantum statistics – Statistical weight or a priori probability – Matrices – The density matrix – Postulates – Condition for statistical equilibrium – Identical particles and symmetry requirement – Bose - Einstein distribution law – Fermi – dirac distribution law - Evaluation of Constant α & β - Results of all three statistics.	12
IV	APPLICATION OF QUANTUM STATISTICS Photon gas - Black body radiation and Planck radiation – Specific heat of solids – Einstein theory – Debye theory – Bose Einstein condensation – Liquid Helium - Electron Gas – Free electron model and electronic emission – Pauli's theory of Para magnetism – White dwarfs.	12

V	TRANSPORT PROPERTIES Boltzmann transport equation – Thermal conductivity – Viscosity – Brownian movement – Onsager solutions – Fluctuation: Energy, Pressure – Ising model – Bragg William	12
	approximation – One dimensional Ising model.	

• Gupta, Kumar, (2003). *Statistical Mechanics*. Twentieth edition, Pragati Prakasahan Meerut, Begam Bridge Meerut, (Units I - V).

- Keiser Huang, Fundamentals of Statistical Mechanics. Revised edition.
- Agarwal K. Eisner, (1998). *Statistical Mechanics*. Second edition, New Age International Publishers, New Delhi.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 07 / 10 PPS 07	Semester: II
Title :	Quantum Mechanics-II	Semester. II
Hrs/Week:	5	Credit: 4
Objectives	> To familiarize with advanced concepts and	
	methodology of quantum mechanics such as	
	perturbation theory of time evaluation problems,	
	relativistic quantum theory, quantization of fields	
	and central force problems.	
	To understand the basic approximate methods in	
	molecular quantum mechanics	

Unit	Content	Hrs
I	TIME DEPENDENT PERTURBATION Schrodinger equation and general solution - Propagator-Alteration of Hamiltonian, transitions and sudden approximation - Perturbation solution for transition amplitude - First order perturbation - Second order perturbation - Harmonic perturbation - Transition to continuum states : Fermi Golden rule -Scattering of a particle by a potential - Absorption and Emission of Radiation	12
II	RELATIVISTIC QUANTUM MECHANICS Klein Gordon equation - Plane wave solutions - Position probability density and current density - Applications to the study of energy levels of electron in a coulomb field - Dirac equation - Probability and Current densities - Alpha, Beta matrices and their properties - Plane wave solutions for Dirac equation - Negative energy	12
III	RELATIVISTIC QUANTUM MECHANICS Electromagnetic potentials: Magnetic moment of the electron – Existence of electron spin - Spin-orbit energy - Zitterbewegung – Dirac's equation of a central field force (H-Atom) – Solution of Dirac's equation of a central field force (H-Atom) – Hydrogen spectrum according to Dirac equation – Covariant formulation of Dirac equation - Properties of Gamma matrices	12
IV	QUANTIZATION OF FIELDS Field - Quantization procedure for particles - Classical formulation of Lagrangian and Hamiltonian equations of motions - Quantum equation of the field - Quantization of the Schrodinger equation - Klein Gordon field - The Dirac field - Creation, annihilation and number operators	12

V	MANY ELECTRON SYSTEMS One particle central force problem - Non interacting particles and separation of variables - Reduction of the two particles problems - Two particles rigid rotor - Hydrogen atom - Bound state Hydrogen atom wave functions -Hydrogen like orbitals - LCAO - V.B Theory - Hartree Method - Hartree Fock, SCF method.	12
---	---	----

- Mathews P.M. Venkatesan, *A Text Book Of Quantum Mechanics*. Tata McGraw Hill Company Ltd, (Unit I).
- Gupta, Kumar, Sharma, *Quantum Mechanics*. Pragathi Prakash Publications (Unit I).
- Aruldhas G. *Quantum Mechanics*. Prentice Hall India Company Pvt Ltd, (Units II & III).
- Satya Prakash R. (2007). *Advanced Quantum Mechanics*. Kedar Nath Ram Nath, Fifth revised edition, (Unit -II).
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*. Himalaya Publishing Company, (Unit IV).
- Ira. N. Levine, *Quantum Chemistry*. Prentice Hall Company Ltd, (Unit V).

- Gupta S.L. Gupta I.D. Advanced Quantum Theory And Fields. SChand and Company Ltd.
- Atkins P.W. Quantum Mechanics. Oxford University Press.
- Walter. A. Harrison, Applied Quantum Mechanics. Applied Publishers Ltd.
- Wu T.Y. Pauchy Hwang W.Y. Relativistic Quantum Mechanics & Quantum Fields. Allied Publishers Ltd.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 08 / 12 PPS 08	Semester: II
Title :	Electromagnetic Theory & Plasma Physics	Semester. II
Hrs/Week:	5	Credit: 4
Objectives	➤ To become familiar with the determination of	
	electric and magnetic fields	
	➤ To study the importance of Maxwell's equation	
	and the propagation of electromagnetic waves in	
	different media	
	To understand the fundamentals of plasma	

Unit	Content	Hrs
I	ELECTROSTATICS AND MAGNETOSTATICS Concept of charge - Coulomb's law - Gauss law - Multipole expansion of charge distribution - Dielectric and its polarization - Electric displacement D - Polarization of non-polar molecules - Lorentz equation for molecular field - Claussius Mossotti relation - Polarisation of polar molecules-Langevin equation-Debye relation and molecular structure - Current density - Ampere's law of force - Biot Savart law - Ampere's circuital law - Magnetic scalar and vector potential - Application to magnetic dipole	12
II	FIELD EQUATION AND CONSERVATION LAWS Equation of continuity - Displacement current D - Maxwell's equations - Energy in electromagnetic field - Poynting vector - Momentum in electromagnetic fields - Electromagnetic potential A and φ - Maxwell's equations in terms of electromagnetic potential - Concept of Gauge - Lorentz Gauge - Coulomb Gauge - Retarded potential - Lienard Wiechart potentials	12
III	PROPAGATION AND INTERACTION OF PLANE ELECTROMAGNETIC WAVES EM waves in free space —Propagation of E.M waves in Isotropic dielectrics - Anisotropic dielectrics in conducting media and in ionized media - Boundary conditions - Reflection and Refraction of EM waves - Fresnel's formula - Brewster's law and polarization of E.M.W - Total internal reflection - Reflection from a metallic surface - Propagation of EM waves between conducting planes	12
IV	RELATIVISTIC ELECTRODYNAMICS Four vectors and tensors - Transformation equations for ρ and J - Transformation equation for A and φ - Electromagnetic	12

	field tensor - Transformation equation for \boldsymbol{E} and \boldsymbol{B} - Covariance of Maxwell's equations: Four vector form & four tensor form - Covariance and transformation law of Lorentz force	
V	FUNDAMENTALS OF PLASMA Occurrence of Plasma in nature - Definition of Plasma - Concept of Temperature - Debye shielding - Plasma parameter - Criteria for Plasma - Relation of Plasma physics to ordinary EM waves - Plasma Oscillations - Fluid equation of motion - Convective derivative - The stress tensor - Collisions - Equation of continuity - Equation of state - Complete set of fluid equations - Fluid drifts perpendicular to B - Fluid drifts parallel to B - Plasma approximation - Applications of Plasma Physics(Simple ideas).	12

- Chopra K.K. Agarwal G. C. (1989). *Electromagnetic Theory*. 5th edition K. Nath & Co, (Units I − IV).
- Chen F.F. Introduction To Plasma Physics And Controlled Fusion. 3rd edition, Plenium press, Newyork, (Unit V).

- David. J. Griffiths, *Introduction To Electrodynamics*. 2nd edition, Prentice Hall of India Private Ltd, New Delhi.
- Gupta Kumar Singh, (1998). *Electrodynamics*. 13th edition, Pragati prakasam.
 Sen S. N. (1999). *Plasma Physics*. 3rd edition, Pragati Prakasam.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 09 / 10 PPS 09	Semester: II
Title :	Electronic Communications	Semester. II
Hrs/Week:	5	Credit: 5
Objectives	> To understand the various modulation	
	techniques.	
	To understand the generation of microwaves.	
	> To understand the basics of satellite	
	communication.	
	> To understand RADAR communication	
	systems.	
	> To understand the building blocks of internet	
	and e - mail communication systems.	

Unit	Content	Hrs
I	ANALOG COMMUNICATION Power and energy in a signal-model of communication system-modulation and frequency translation - Amplitude Modulation: DSB-SC, SSB, VSB and conventional AM - Superhetrodyne AM receiver - Frequency Modulation: Modulation index, spectrum and bandwidth, direct generation and demodulation, superhetrodyne FM receiver - Noise: noise power spectral density, white, thermal and shot noise, equivalent noise temperature - Signal to noise ratio and noise figure	12
II	PULSE MODULATION AND DIGITAL COMMUNICATION Pulse Modulation: Sampling theorem, informal justification, pulse amplitude modulation, time division multiplexing and pulse time modulation - Pulse code Modulation: Quantization Error, bandwidth, companding and delta modulation - Data Transmission: Base band and radio frequency transmission, FSK and PSK - Information Theory: Rate and measurement, channel capacity, Noisy and noiseless channel - Shannon's theorem	12
III	MICROWAVE SYSTEMS Microwaves - Multicavity klystron - Reflex klystron - Magnetron - Travelling wave tube SATELLITE SYSTEMS Kepler's law - Orbits - Geostationary orbits - Power systems - Altitude control- Satellite station keeping - Antenna look angles - Limits of visibility- Frequency plans and polarization - Transponder	12

IV	RADAR SYSTEMS Fundamentals - Radar performance factors - Pulsed radar systems - Antennas and Scanning - Display methods - Search radar systems and tracking radar systems - Moving target indication - Radar beacons - CW Doppler radar - Frequency modulated CW radar - Phased array radars - Planar array radars	12
V	INTERNET SYSTEMS (ELEMENTARY IDEAS ONLY) The wired world of the Internet - Information through the Internet -Linking net works to the Internet - TCP/IP - Internet addresses and domains - Anatomy of web connection - Internet file types - DNS - Routers - Client/Server Architecture - Connectivity between Computer and Internet - ISDN E-MAIL SYSTEMS (ELEMENTARY IDEAS ONLY) Anatomy of mail message - E mail through Internet - E mail software and E-mail between networks	12

- Swaminathan Madhu, (1985). *Electronic Circuits And Systems*. 1st Edition, H.W.Sams, (Units I & II).
- Kennedy, Davis, (2002). *Electronic Communication Systems*. 16th Edition, Tata McGraw-Hill, (Units III & IV).
- Dennis Roddy, John Coolen, (2000). *Electronic Communications*. 18th Edition, Prentice-Hall of India, (Unit III).
- Preston Gralla, (1996). *How The Internet Works*. 1st Edition, Ziff- Davis press, (Unit V).

- Louis E.Frenzel, (2001). *Communication Electronics*. 3rd Edition, Tata McGraw Hill Publishing Company Ltd.
- Wayne Tomasi, (1998). *Electronic Communication Systems*. 3rd Edition, Pearson Education Asia.
- Robert J. Schoenbeck, (1992). *Electronic Communication Systems*.3rd Editon Universal Book Stall.
- Wayne Tomasi, Vincent F.Alisouskas, (1988). *Telecommunications*. Printice-Hall International.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
	-	the year: 2013
Subject Code: 13 PPS 10		Semester: II
Title :	Subject Viva Voce - II	Semester. II
Credit :	2	

Department	Physics	
Course	MSc Physics	Effective from the
		year: 2013
Subject Code:	13 PPS 11	Semester: I & II
Title :	General Physics Lab I	Semester. 1 & 11
Hrs/Week:	4	Credit: 4
Objectives	> To become familiar with the techniques of	
	advanced General Experiments.	

Cycle	Content	Hrs
I	 Young's modulus - Elliptical fringes - Cornu's method Viscosity of a liquid - Mayor's oscillating disc Thermal conductivity - Forbe's method Temperature coefficient and band gap energy of a Thermistor Measurement of Spot size, Divergence & Wavelength of a Laser beam 	24
II	 Young's modulus - Hyperbolic fringes - Cornu's method Specific heat of a liquid - Ferguson's method λ, d λ & Thickness of FP etalon - Fabryperot Interferometer Rydberg's constant - Hydrogen spectrum Refractive index of a liquid & Absorption coefficient of transparent Material -Laser Source 	24
III	 Rydberg's constant - Solar spectrum Hall effect in Semiconductors Study of Birefringence - Channel spectrum method or Diffraction - Hartmann's Interpolation Stefan's constant Biprism - Determination of λ of monochromatic source & thickness of a transparent sheet 	24

- Worsnop, Flint, (1971). Advanced Practical Physics. Asia Publishing house.
 Singh S.P. (Vol. I & Vol. II), (1998). Advanced Practical Physics. 11th Edition Pragati Prakashan.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 12	Semester: I &
Title :	Electronics Lab I	II
Hrs/Week:	4	Credit: 4
Objectives	> To understand the action of semiconductor	
	devices, amplifiers and oscillators.	

Cycle	Content	Hrs
	1. CRO - Familiarization: Lissajous figures, Measurement	
	of Voltage, Phase and Frequency	
ī	2. I.C - Regulated power supply	24
1	3. RC coupled amplifier - Double stage	24
	4. Feedback amplifier	
	5. FET amplifier - Common Source	
	1. Emitter follower	
	2. UJT - Characteristics	
II	3. FET amplifier - Common Drain	24
	4. Phase shift Oscillator using opamp	
	5. Power amplifier - Push Pull	
	1. SCR characteristics	
III	2. Astable Multivibrator using 555 timer IC and Op amp	
111	3. Power amplifier - Complementary symmetry	24
	4. UJT - Relaxation Oscillator	24
	5. Wave shaping circuits - Differentiator, Integrator,	
	Clipper and Clamper	

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd.
- Bhargowa N.N. (1984). *Basic Electronics And Linear Circuits*. Tata hill Publishing Co Ltd.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from the
		year: 2013
Subject Code:	Subject Code: 13 PPS 11	
Title :	General Physics Lab I	Semester: I & II
Hrs/Week:	4	Credit: 4
Objectives	> To become familiar with the techniques of	
	advanced General Experiments.	

Cycle	Content	Hrs
I	 Young's modulus - Elliptical fringes - Cornu's method Viscosity of a liquid - Mayor's oscillating disc Thermal conductivity - Forbe's method Temperature coefficient and band gap energy of a Thermistor Measurement of Spot size, Divergence & Wavelength of a Laser beam 	24
II	 Young's modulus - Hyperbolic fringes - Cornu's method Specific heat of a liquid - Ferguson's method λ, d λ & Thickness of FP etalon – Fabryperot Interferometer Rydberg's constant - Hydrogen spectrum Refractive index of a liquid & Absorption coefficient of transparent Material –Laser Source 	24
III	 Rydberg's constant - Solar spectrum Hall effect in Semiconductors Study of Birefringence - Channel spectrum method or Diffraction - Hartmann's Interpolation Stefan's constant Biprism - Determination of λ of monochromatic source & thickness of a transparent sheet 	24

- Worsnop, Flint, (1971). *Advanced Practical Physics*. Asia Publishing house.
 Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11th Edition Pragati Prakashan.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 12	Semester: I &
Title :	Electronics Lab I	II
Hrs/Week:	4	Credit: 4
Objectives	> To understand the action of semiconductor	
	devices, amplifiers and oscillators.	

Cycle	Content	Hrs
	1. CRO - Familiarization: Lissajous figures, Measurement	
	of Voltage, Phase and Frequency	
ī	2. I.C - Regulated power supply	24
1	3. RC coupled amplifier - Double stage	24
	4. Feedback amplifier	
	5. FET amplifier - Common Source	
	1. Emitter follower	
	2. UJT - Characteristics	24
II	3. FET amplifier - Common Drain	
	4. Phase shift Oscillator using opamp	
	5. Power amplifier - Push Pull	
	1. SCR characteristics	
III	2. Astable Multivibrator using 555 timer IC and Op amp	
1111	3. Power amplifier - Complementary symmetry	24
	4. UJT - Relaxation Oscillator	<i>2</i> 4
	5. Wave shaping circuits - Differentiator, Integrator,	
	Clipper and Clamper	

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd.
- Bhargowa N.N. (1984). *Basic Electronics And Linear Circuits*. Tata hill Publishing Co Ltd.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code : Title :	13 PPS 17 Lasers & Non-Linear Optics	Semester: IV
Hrs/Week:	5	Credit: 4
Objectives	To study the basic principle and characteristics of Lasers.	
	To gain knowledge about the action of various types of Lasers, performance improvement and their applications.	
	➤ To become familiar with the ideas and concepts of Non-linear optics and Laser Spectroscopy.	

Unit	Content	Hrs	
	BASIC PRINCIPLES OF LASERS Energy levels - Thermal equilibrium - Relationship between		
	Einstein's coefficients - Condition for large Stimulated emissions -		
I	Condition for light amplification - Line shape function -	12	
1	Population inversion - Pumping methods - Threshold condition -	12	
	Critical population inversion - Line broadening - Cavity		
	configurations - Modes - Laser rate equations for two, three & four level systems		
	LASER CHARACTERISTICS		
	Spatial & Temporal coherence - Directionality -		
	Monochromaticity - Intensity		
II	TYPES OF LASERS	12	
	Ruby laser - Nd YAG laser - Helium Neon laser - Carbondioxide		
	laser - Semiconductor diode laser - Excimer laser - Dye laser - Chemical laser - X ray laser - Free electron laser - Fiber laser -		
	Color center laser		
	PERFORMANCE IMPROVEMENT OF LASER		
III	Q switching - Methods of Q switching - Peak power - Laser		
111	amplifiers - Mode locking - Distributed feedback laser	12	
	APPLICATIONS OF LASER	12	
	Material working - Isotope separation - Holography -		
	Measurement of distance - Laser in medicine NON-LINEAR OPTICS		
	Harmonic generation - Second harmonic generation - Phase		
IV	matching Third harmonic generation - Optical mixing -	-	
	Parametric generation of light - Self focusing of light		
	MULTIPHOTON PROCESSES	12	
	Multiquantum Photoelectriceffect - Twophoton processes		
	(Experiments) - Three photon processes - Second harmonic		
	generation - Parametric generation - Parametric light Oscillator -		

	Frequency up conversion - Phase conjugate optics	
V	LASER SPECTROSCOPY Rayleigh and Raman scattering - Stimulated Raman effect - Hyper Raman effect (Classical treatment) - Coherent Anti Stokes Raman Scattering - Spin flip Raman Laser - Photo acoustic Raman Spectroscopy - Saturation absorption Spectroscopy - Doppler free two photon Spectroscopy - Multi photon ionization - Single atom detection with lasers - Laser cooling and Trapping of neutral atoms	12

- Avadhanulu M.N. (2001). *Lasers Theory And Applications*. S.Chand and Company Ltd, New Delhi, (Units I III).
- Laud B.B. (2001). *Lasers And Nonlinear Optics*. 2nd Edition, New age international private Ltd, New Delhi, (Units III V).

- William T. Silfvast, (1998). *Laser Fundamentals*. (Cambridge University Press), First South Asian paperback Edition.
- Ghatak, Thyagarajan, Lasers Theory And Applications. Macmillan India Ltd.
- Ralf Menzel, (2001). *Photonics*. Springer International Edition.
- Abbi S.C. Ahmad S.A. (2001). *Non Linear Optics And Laser Spectroscopy*. Narosa publishing house.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:		Semester: IV
Title :	Nuclear & Particle Physics	beinester. IV
Hrs/Week:	5	Credit: 4
Objectives	> To study the nuclear structure and properties of	
	nuclei through nuclear models.	
	> To understand the nuclear reactions and to get	
	an insight into the elementary particles.	

Unit	Content	Hrs
I	TWO BODY PROBLEM AND NUCLEAR FORCES Deutron - Properties - Ground state of Deutron - Neutron Proton scattering at low energies - Scattering length and effective range - Spin dependence of n p forces - Tensor forces - Exchange forces - Nuclear forces - Properties of nuclear forces - Yukawa theory of nuclear forces	12
II	NUCLEAR MODELS Liquid drop model - Bohr Wheeler's theory - Shell model - Magic numbers - Magnetic moments and the Shell model - Prediction of angular momenta of nuclear ground states by Shell model - Collective model - Vibrational and Rotational states - Elementary ideas of Unified and Superconductivity model	12
III	NUCLEAR DISINTEGRATION Law of radioactive decay - Alpha ray emission - Gamow's theory of alpha decay - Alpha ray energies and fine structure - Alpha disintegration energy - Beta theory - Fermi's theory of beta decay - Fermi and G.T Selection rules - Parity in beta decay - Helicity - Electron capture - Gamma decay - Theory of angular correlation of successive radiation - Internal conversion - Angular	12
IV	momentum and Parity of excited levels NUCLEAR FISSION AND FUSION REACTORS Fission and Nuclear structure - Controlled fission reactions - Fission reactors - Radioactive fission products - A natural fission reactor - Basic fusion processes - Characteristics of fusion - Solar fusion - Controlled fusion reactors	12
V	ELEMENTARY PARTICLES General classification of Elementary particles - Conservation law and selection rules for production and decay of particles - CPT theorem - Hadron classification according to Eight foldway - Gellmann Okuba mass formula for Baryons - Quarks - Quantum numbers - Quark content of Baryons and Mesons - Unification of fundamental forces of nature - Unification of Weak and E.M	12

Interactions - Qu	ualitative ideas	of Salam and	Weinberg model
-------------------	------------------	--------------	----------------

- Tayal D.C. (2008). *Nuclear Physics*. 5th edition, Himalaya Publishing house, (Units I IV).
- Pandya M.L. Yadav R.P.S. (1989). *Elements Of Nuclear Physics*. 5th Edition, Kedar Nath Ram Nath, (Units I IV).
- Atam P.Arya, (1974). *Elementary Modern Physics*. Addison Wesley Publishing Co, (Units III & IV).
- Raymond A.Serway, Clement J.Moses, Curt A. Moyer, *Modern Physics*. 2nd Edition, Saunders College publishing (Harcourt Brace College publishers), (Units IV & V).

- Srivastava B.N. (1971). *Basic Nuclear Physics*. 12th edition, Pragathi Prakashan, Meerut.
- Kenneth S.Krane, (1988). *Introductory Nuclear Physics*. 2nd edition, John Wiley & sons.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 19 / 10 PPS 19	
Title :	Microprocessor & Object-Oriented Programming With	Semester: IV
	C++	
Hrs/Week:	5	Credit: 5
Objectives	> To know the architecture and instruction set of	
	the Microprocessor Intel 8085.	
	> To familiarize the method of interfacing of	
	different programmable devices.	
	➤ To become familiar with the C++ programming	
	language.	
	➤ To apply the C++ language to solve problems in	
	Physics.	

Unit	Content	Hrs
I	MICROPROCESSOR FUNDAMENTALS 8085 Microprocessor pin diagram & functions - Architecture - Addressing modes - Instruction set - Data transfer instructions - Arithmetic instructions - Logical and Branch instructions - Stack, I/O & Machine control instructions - Subroutine ,Conditional & Call instructions	12
II	MICROPROCESSOR PROGRAMMING & INTERFACING Steps involved in Microprocessor programming - Straight line programs -Looping programs - Mathematical programs - Interfacing with ROM & RAM - I/O interfacing basics - Interfacing with practical I/O ports - Synchronizing I/O data transfers using Interrupts - Address decoding	12
III	PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING Object Oriented Programming Paradigm - Basic concepts of Object Oriented Programming - Benefits of OOP CLASSES & OBJECTS Specifying a Class - Defining Member functions - Nesting of Member functions - Private Member functions - Arrays within a class - Memory allocation for objects- Static data members & Member functions - Arrays of Objects - Objects as function arguments - Friendly functions - Returning objects	12
IV	CONSTRUCTORS & DESTRUCTORS Constructors - Parameterized Constructors - Multiple Constructors in a Class - Copy Constructor -Dynamic Constructor- Destructors OPERATOR OVERLOADING Defining Operator Overloading - Overloading Unary & Binary Operators - Overloading Binary Operators using Friends - Rules	12

	for Overloading Operators	
	INHERITANCE: EXTENDING CLASSES	
	Defining Derived classes - Single inheritance - Making a Private	
	Member inheritable - Multilevel inheritance - Multiple inheritance	
37	- Hierarchical inheritance - Hybrid inheritance - Virtual base	10
V	classes	1.2
	POINTERS &VIRTUAL FUNCTIONS	
	Pointers to Objects - this Pointer - Pointers to Derived Classes -	
	Virtual functions - Pure virtual functions	

- Roger L.Tokheim, (1987). *Microprocessor Fundamentals*. 3rd Edition, Schaum's Outline Series, McGraw Hill Book Company, (Units I & II).
- Balagurusamy E. (2004). *Object Oriented.Programming With C++*. Tata Mc Graw Hill Publication, New Delhi, (Units III V).

- Ramesh S.Gaonkar, (1997). *Microprocessor Architecture Programming & Applications With The 8085*. 3rd Edition, Penram International Publishing, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). *Mastering C++*. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). *Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code: 13 PPS 20		Semester: IV
Title :	Project	Semester. IV
Credit :	2	

Department	Physics	
Course	MSc Physics	Effective from
	-	the year: 2013
Subject Code: 13 PPS 21		Semester: IV
Title :	Subject Viva Voce - IV	Semester. IV
Credit :	2	

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code: 13 PPS 22		Semester: III &
Title : General Physics Lab II		IV
Hrs/Week:	4	Credit: 4
Objectives	> To become familiar with the techniques of	
	advanced General Experiments.	

Cycle	Content	Hrs
I	 Copper Arc Spectra - CDS λ, dλ of a Monochromatic source and Thickness of a Mica sheet - Michelson's Interferometer Zeeman effect Magnetic Susceptibility - Quincke's Method Resistance of a Semiconductor - Four Probe Method 	24
II	 Iron Arc Spectra – CDS Velocity of Sound in liquid- Ultrasonic Diffraction Magnetic Susceptibility- Guoy's Method Magnetoresistance BH Curve – Hysterisis - Standard Solenoid 	24
III	 Brass Arc Spectra - CDS e/m - Millikan's oil drop method Polarimeter - Specific rotation of optically active substances Planck's constant - Photovoltaic cell and VI characteristics of solar cell Optical Fibre - Numerical aperture, Attenuation, Particle size and λ 	24

- Worsnop, Flint, (1971). *Advanced Practical Physics*. Asia Publishing house.
 Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11th Edition Pragati Prakashan.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code:	13 PPS 23	Semester: III &
Title : Electronics Lab II		IV
Hrs/Week:	4	Credit: 4
Objectives	 To know the action and applications of operational amplifier. To familiarize the method of interfacing of different programmable devices 	

Cycle	Content	Hrs
I	 Parameters of Operational amplifier Inverting, Non Inverting, Differential amplifier, Integrator and Differentiator- Op Amp Schmitt trigger, Scale changer, Phase changer - Op Amp Constant current source - Op Amp Microprocessor - Addition, Subtraction, Multiplication, Division & Conversion of Number systems 	24
II	 Simple and Regenerative Comparators – Op Amp Digital to Analog converter - Op Amp Adder, Subtractor, Current to Voltage converter and Voltage to Current converter-Op Amp Low pass, Band pass & High pass filters - Op Amp Microprocessor - Interfacing I 	24
III	 Window Detector – Op Amp Analog to Digital converter - Op Amp Solving first order simultaneous equations of two variables- Op Amp Function Generator - Op Amp Microprocessor - Interfacing II 	24

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill.
- Subramaniyan S.V. (1983). Experiments In Electronics. Macmillan India Ltd.
- Gayakwad, (1988). Operational Amplifier And Linear Integrated Systems. 2nd Edition, Prentice hall of India pvt Ltd.
- 8085 µp Trainer kit Manual, Version 4.0 Microsystems Pvt Ltd.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC

Department	Physics	
Course	MSc Physics	Effective from
		the year: 2013
Subject Code: 13 PPS 24		Semester: IV
Title :	Computer Lab in C++	Semester. IV
Hrs/Week:	2	Credit: 2
Objectives	➤ To become familiar with the C++ programming	
	language.	
	To apply the C++ language to solve problems in	
	Physics.	

Content	Hrs
1. Class implementation.	
2. Arrays within a Class.	
3. Static data members and member function.	
4. Arrays of Objects	
5. Friend function.	
6. A function friendly to two classes.	
7. Overloaded Constructors.	
8. Implementation of Destructors.	36
9. Overloading Unary operator.	
10. Overloading Binary operator.	
11. Single Inheritance.	
12. Hybrid inheritance.	
13. Virtual base class.	
14. Pointers to derived objects.	
15. Virtual functions.	

- Balagurusamy E. (2004). *Object Oriented. Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). *Mastering C++*. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). *Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.

Compiled by Name with Signature	Verified by HOD Name with Signature	COE	CDC