| Department     | Physics                                          |                |
|----------------|--------------------------------------------------|----------------|
| Course         | MSc Physics                                      | Effective from |
|                |                                                  | the year: 2016 |
| Subject Code : | 16 PPS 101                                       | Somastor: I    |
| Title          | : Core I: Classical Dynamics                     | Semester. I    |
| Hrs/Week:      | 5                                                | Credit: 4      |
| Objectives     | ➢ To understand the Lagrangian and Hamiltonian   |                |
|                | formulations of Mechanics and to apply them to   |                |
|                | simple systems.                                  |                |
|                | To learn how does the Canonical transformation   |                |
|                | lead to Hamilton Jacobi theory.                  |                |
|                | $\succ$ To understand the concepts of Rigid body |                |
|                | dynamics, Small oscillations and Nonlinear       |                |
|                | dynamics.                                        |                |

| Unit | Content                                                         | Hrs |
|------|-----------------------------------------------------------------|-----|
|      | LAGRANGIAN FORMALISM                                            |     |
|      | Constraints and Degrees of freedom - Generalized coordinates:   |     |
|      | Generalized Displacement, Velocity, Acceleration,               |     |
|      | Momentum, Force & Potential - Variational techniques and        |     |
|      | Euler's Lagrange differential equation - Hamilton's Variational |     |
| Т    | principle - Lagrange's equation of motion from Hamilton's       | 13  |
| 1    | principle - Deduction of Newton's second law of motion from     | 15  |
|      | Hamilton's principle - Applications of Lagrange's equation of   |     |
|      | motion: Linear harmonic oscillator - Simple pendulum -          |     |
|      | Isotropic oscillator - Particle moving under central force -    |     |
|      | Conservation theorems: Cyclic coordinates - Conservation of     |     |
|      | Linear momentum - Conservation of energy                        |     |
|      | HAMILTONIAN FORMALISM                                           |     |
|      | Phase space - Hamiltonian - Hamilton's canonical equation of    |     |
|      | motion -Significance of H - Deduction of canonical equation     |     |
|      | from Variational principle -Applications of Hamilton's          |     |
|      | equation of motion: Simple pendulum - Particle in a central     |     |
| 11   | field of force - Hamiltonian of a Charged particle in an        | 13  |
|      | electromagnetic field - Principle of least action and proof -   |     |
|      | Canonical transformations - Generating function and different   |     |
|      | forms - Poisson brackets: Definition - Equation of motion in    |     |
|      | Poisson bracket form - Angular momentum and Poisson             |     |
|      | bracket relations                                               |     |
|      | HAMILTON JACOBI THEORY                                          |     |
|      | Hamilton Jacobi method: H J partial differential equation -     |     |
| III  | Solution of H J equation - Discussion on Hamilton's principle   |     |
|      | function - Solution of harmonic oscillator problem by H J       | 13  |
|      | method - Particle falling freely - H J equation for Hamilton's  | -   |
|      | characteristic function - Kepler's problem solution by H J      |     |
|      | method - Action and Angle variables - Solution of harmonic      |     |
|      | oscillator problem by action angle variable method              |     |

(16 PPS 101)

| IV | <b>RIGID BODY DYNAMICS &amp; SMALL OSCILLATIONS</b><br>Euler's theorem - Euler's angles - Rotational kinetic energy of<br>a rigid body - Equations of motion for a rigid body - The<br>motion of symmetric top under the action of gravity - Types of<br>equilibria : Stable & Unstable equilibrium - Formulation of the<br>problem : Lagrange's equations for small oscillations -<br>Properties of T,V and $\omega$ - Normal coordinates & normal<br>frequencies of vibration - Systems with few degrees of<br>freedom : Eree vibrations of linear triatomic molecule                                                | 13 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V  | NONLINEAR DYNAMICS<br>Dynamical systems: Linear & Nonlinear forces - Mathematical<br>Implications of nonlinearity: Linear & Nonlinear systems,<br>Linear superposition principle - Working definition of<br>nonlinearity - Effects of Nonlinearity - Linear Oscillators:<br>Linear Oscillators and Predictability: Free Oscillations,<br>Damped Oscillations, Damped & Forced Oscillations –<br>Nonlinear Oscillators : Damped and Driven nonlinear<br>oscillators : Free Oscillations, Damped Oscillations, Primary<br>Resonance & Jump Phenomenon, Secondary Resonances -<br>Nonlinear Oscillations and Bifurcations | 13 |

- Herbert Goldstein, (2001). *Classical Mechanics*. Addison Wesley Publishing Company, (Units I IV).
- Gupta S.L. Kumar V. Sharma R.C. (2010). *Classical Mechanics*. Pragati Prakashan, Meeret, (Units I IV).
- Laxmanan M. Rajasekar S. (1978). *Nonlinear Dynamics*. Springer Verlag, Distributors: Prism Books Pvt Ltd, Berlin, (Unit V).

**Reference Books** 

• Rana N.C. Joag P.S. (2001). *Classical Mechanics*. Tata McGraw Hill, New Delhi.



| U | nit |
|---|-----|
|   | mu  |

| Course         | MSc Physics                                                                                                           | Effectiv | ve from |
|----------------|-----------------------------------------------------------------------------------------------------------------------|----------|---------|
|                |                                                                                                                       | the yea  | r: 2016 |
| Subject Code : | 16 PPS 102                                                                                                            | Semest   | er I    |
| Title :        | Core II : Quantum Mechanics-I                                                                                         | bennest  |         |
| Hrs/Week:      | 5                                                                                                                     | Credit:  | 4       |
| Objectives     | $\triangleright$ To understand the basic concepts and                                                                 |          |         |
|                | formalisms in Quantum mechanics.                                                                                      |          |         |
|                | To solving Schrödinger wave equation to                                                                               |          |         |
|                | simple systems.                                                                                                       |          |         |
|                | > To understand and apply various approximate                                                                         |          |         |
|                | methods to solve time independent problem.                                                                            |          |         |
|                | > 10 understand the quantum mechanical                                                                                |          |         |
|                | identical particles                                                                                                   |          |         |
|                | To analyze controling problems using Porm                                                                             |          |         |
|                | 10 analyse scattering problems using Born-<br>approximation and Partial wave techniques                               |          |         |
|                | approximation and Faitial wave techniques.                                                                            |          |         |
|                | Matrix algebra Linear vector space Hilbert sp                                                                         |          |         |
|                | orthonormality property of basis vectors – Schwartz ineg                                                              | mality   |         |
|                | - Linear operator - Figen functions and Figen val                                                                     |          |         |
|                | Hermitian operator – Schmidt orthogonalisation proceed                                                                | dure –   |         |
| Ι              | Postulates of Quantum mechanics – Matrix representat                                                                  | tion of  | 13      |
|                | an operator – Column representation of the wave func                                                                  | tion –   |         |
|                | Normalisation and orthogonality of wavefunctin in                                                                     | matrix   |         |
|                | form – Product of two linear transformations - Dual s                                                                 | pace –   |         |
|                | Change of basis, similarity and unitary transformations.                                                              | L        |         |
|                | STATIONARY STATES                                                                                                     |          |         |
|                | Schrödinger's equation in Cartesian and Spl                                                                           | herical  |         |
|                | coordinates - Three dimensional harmonic oscillator                                                                   | – The    |         |
| т              | rigid rotator with free axis - Eigen function for the rot                                                             | tator –  | 12      |
| 11             | Rigid rotator in a fixed plane - Motion of a particle in a                                                            | a three  | 15      |
|                | dimensional square well Potential – The hydrogen                                                                      | atom:    |         |
|                | Equations and Solutions of $\phi$ , $\theta$ and R -Heise                                                             | nberg,   |         |
|                | Schrödinger and Interaction pictures.                                                                                 |          |         |
|                | TIME INDEPENDENT PERTURBATION THEORY                                                                                  | ζ        |         |
| Ш              | Perturbation theory for a system with Non-degenerat                                                                   | te and   |         |
|                | Degenerate levels - Stark effects in Hydrogen and two el                                                              | ectron   | 13      |
|                | atoms - The variation method and its application to Hyc                                                               | drogen   | 10      |
|                | molecule - WKB approximation and its validity – Appli                                                                 | ication  |         |
|                | to barrier penetration.                                                                                               |          |         |
|                | ANGULAK MOMENTUM AND IDENT                                                                                            | ICAL     |         |
|                | ranice of the engular momentum vester compared in the                                                                 | oddar    |         |
|                | Algebra of the angular momentum vector components - I                                                                 | Lauder   |         |
| IV             | Angular momentum operator Addition of two o                                                                           | autori - | 13      |
|                | momenta and CC coefficients Application to two al                                                                     | actron   |         |
|                | systems - Parity operator Symmetric and Antisymmetric                                                                 |          |         |
|                | systems - 1 anty operator, symmetric and Antisymmetric<br>functions for a system of <b>n</b> identical particles $-1$ | Pauli'e  |         |
|                | 1 remember 101 a system of <b>n</b> included particles - 1                                                            | uun s    |         |

#### (16 PPS 102)

|    | SCATTERING THEORY                                              |    |
|----|----------------------------------------------------------------|----|
|    | Scattering amplitude and scattering cross section - Integral   |    |
| N7 | equation in terms of Green's function - Born approximation     | 12 |
| v  | and its validity - Application to screened coulomb potential - | 15 |
|    | Partial wave analysis - Optical theorem - Application to low   |    |
|    | energy two nucleon scattering                                  |    |

Text Books

- Gupta, Kumar, Sharma, Quantum Mechanics. Pragathi Prakash Publications, Meerut, (Unit I).
- Satya Prakash, (2007). Advanced Quantum Mechanics. Kedar nath Ram Nath, Fifth revised edition, Meerut, (Unit -II).
- Aruldhas, (2002). *Quantum Mechanics*. Prentice Hall India Company Pvt Ltd, New Delhi, (Units I, III & V).
- Gupta S.L. Gupta I.D. (1982). *Advanced Quantum Theory And Fields*. S Chand and Company Ltd, New Delhi, (Unit IV).

- Mathews, Venkatesan, (2002). A Text Book Of Quantum Mechanics. Tata McGraw Hill Company Ltd, New Delhi.
- Atkins P.W. (1984). *Quantum Mechanics*. Oxford University Press, Oxford.

| Department   | Physics                                                                                                         |            |        |
|--------------|-----------------------------------------------------------------------------------------------------------------|------------|--------|
| Course       | MSc Physics                                                                                                     | Effective  | e from |
|              |                                                                                                                 | the year:  | 2016   |
| Subject Code | : 16 PPS 103                                                                                                    | Semeste    | r• I   |
| Title        | : Core III: Mathematical Physics                                                                                | Semeste    | 1.1    |
| Hrs/Week:    | 5                                                                                                               | Credit: 4  | -      |
| Objectives   | $\succ$ To become familiar with the evaluation of                                                               |            |        |
|              | residues of complex functions and definite                                                                      |            |        |
|              | integrals.                                                                                                      |            |        |
|              | To understand the concepts of special functions                                                                 |            |        |
|              | as solutions of linear differential equations.                                                                  |            |        |
|              | F To provide mathematical foundation in Partial differential equations. Equations transformed and               |            |        |
|              | Direct delta functions, Fourier transforms and                                                                  |            |        |
| Unit         | Dirac delta functions                                                                                           |            | I Ima  |
| Unit         |                                                                                                                 |            | HIS    |
|              | SPECIAL FUNCTIONS                                                                                               | otions     |        |
|              | Generating function of Legendre polynomial - Ort                                                                | hogonal    |        |
|              | properties of Legendre's polynomials - Recurrence for                                                           | ormulae    |        |
|              | for $\mathbf{P}(\mathbf{x})$ . Possel's differential equations: Possel's for                                    | notiona    |        |
| Ι            | of first kind. To solve L (y) L (y) L (y) and L                                                                 |            | 13     |
|              | of first kind - 10 solve $J_{1/2}(x)$ , $J_{-1/2}(x)$ , $J_{3/2}(x)$ and $J$                                    | -3/2(X) -  |        |
|              | Recurrence formulae for $J_n(x)$ - Generating function of                                                       | $J_n(x)$ - |        |
|              | Hermite differential equation & Hermite polynor                                                                 | nials -    |        |
|              | Generating function of Hermite polynomials - Rec                                                                | urrence    |        |
|              | formulae for Hermite polynomials                                                                                |            |        |
|              | COMPLEX VARIABLES                                                                                               | · c        |        |
|              | Analytic function – The necessary and sufficient condit $f(x)$ to be analytic Couchy Diamonn Differential again | tions for  |        |
|              | n(z) to be analytic. Cauchy Riemann Differential equa                                                           | ions in    |        |
| II           | Cauchy's integral formula Taylor's series and L                                                                 | onront's   | 13     |
|              | series - Singularities of an analytic function - Residu                                                         | uncin s    |        |
|              | their evaluation - Cauchy Residue theorem - Evaluation                                                          | ation of   |        |
|              | definite integrals of Trignometric functions of $\cos\theta$ and                                                | sin0       |        |
|              | LAPLACE & WAVE EQUATIONS                                                                                        | 511101     |        |
|              | Solution of Laplace's equation in Cartesian coordi                                                              | nates -    |        |
|              | Examples of Two dimensional steady flow of heat - S                                                             | Solution   |        |
| 111          | of Laplace's equation in two dimensional cyl                                                                    | indrical   | 12     |
|              | coordinates – Problems - Solution of Laplace's equa                                                             | ation in   | 13     |
|              | Spherical polar coordinates – Problems – Diffusion equ                                                          | ation or   |        |
|              | Fourier equation of heat flow - Solution of heat flow e                                                         | quation    |        |
|              | – Problems.                                                                                                     |            |        |
|              | FOURIER INTEGRAL AND TRANSFORMATION                                                                             | 1S         |        |
|              | Fourier Integral – Problems – Fourier's Transform:                                                              | Infinite   |        |
| IV           | Fourier sine and cosine transforms - Properties of F                                                            | ourier's   | 13     |
| 1,           | Transform: Addition theorem, Similarity theorem, S                                                              | Shifting   | 15     |
|              | property, Convolution theorem and Parseval's theorem                                                            | orem –     |        |
|              | Problems – Finite Fourier sine and cosine transf                                                                | orms -     |        |

| Problems |        |
|----------|--------|
|          | (CONTD |
|          | 2)     |

### (16 PPS 103)

|   | TENSORS, BETA AND GAMMA FUNCTIONS                               |    |
|---|-----------------------------------------------------------------|----|
|   | Transformation of co-ordinates - Summation convention -         |    |
|   | Kronecker delta symbol - Generalised Kronecker delta -          |    |
|   | Scalars, contravariant and covariant vectors- Tensors of higher |    |
|   | ranks - Algebraic operations of tensors – Quotient law -        |    |
| V | Symmetric and skew symmetric tensors - Beta and Gamma           | 13 |
|   | functions: Symmetry property of beta function – Evaluation of   |    |
|   | beta function – Transformation of beta function - Evaluation of |    |
|   | beta function infantion of beta function Evaluation of          |    |
|   | Gamma function - Transformation of Gamma function –             |    |
|   | Relation between beta and gamma function – Evaluation of        |    |
|   | Miscellaneous integrals                                         |    |

Text Books

• Sathyaprakash, (2013). Mathematical Physics. Sultan chand & sons, New Delhi, (Units I – V).

- Gupta B.D. (1989). *Mathematical Physics*. Vikas publication house, Noida, U.P.
- Louis A.Pipes, Lawrence R. Harvill, (1970). Applied Mathematics For Engineers & Physicsts. McGraw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). *Mathematical Physics*. Wiley Eastern Limited, New Delhi.
- Bose R.K. Joshi M.C. (1984). *Methods Of Mathematical Physics*. Tata McGraw-Hill, New Delhi.

| Department     | Physics                                                                      |          |          |
|----------------|------------------------------------------------------------------------------|----------|----------|
| Course         | MSc Physics                                                                  | Effecti  | ve from  |
|                |                                                                              | the year | ar: 2016 |
| Subject Code : | 16 PPS 1E1                                                                   | Semes    | ter: I   |
| Title :        | Major Elective I: Electronics                                                | Semes    |          |
| Hrs/Week:      | 5                                                                            | Credit   | : 5      |
| Objectives     | $\succ$ To understand the action of semiconductor                            |          |          |
|                | devices, amplifiers and oscillators.                                         |          |          |
|                | $\blacktriangleright$ To know the construction, action and                   |          |          |
|                | applications of operational amplifier                                        |          |          |
| Unit           | Content                                                                      |          | Hrs      |
|                | SEMICONDUCTOR DEVICES                                                        |          |          |
|                | Semiconductor and Energy bands - PN Junction diod                            | le and   |          |
|                | Zener diode - Characteristics - Zener diode as a v                           | oltage   |          |
|                | regulator - Regulated power supply - Transistor & Ac                         | ction -  |          |
| I              | Characteristics - CE, CB and CC configurations - Re                          | elation  | 13       |
| 1              | between $\alpha$ , $\beta$ and $\gamma$ - Load line & Operating point - Stal | oility - | 10       |
|                | Voltage divider Self bias - JFET, Depletion MOSFE                            | T and    |          |
|                | Enhancement MOSFET - Characteristics - UJT and Rela                          | xation   |          |
|                | Oscillator - SCR & SCR as a switch - Triac - Tunnel d                        | liode -  |          |
|                | Varactor diode                                                               |          |          |
|                | AMPLIFIERS                                                                   |          |          |
|                | Principle of amplification - Classification of amplif                        | iers -   |          |
|                | Common base, Common emitter RC coupled amplifier                             | rs and   |          |
|                | Frequency response - Hybrid parameters and Small                             | signal   |          |
| п              | analysis - Emitter follower - Concept of Power amplification                 | ation -  | 12       |
| 11             | Classification of Power amplifiers - Transformer co                          | oupled   | 15       |
|                | class A Power amplifier – Calculation of Efficiency - C                      | lass B   |          |
|                | Push pull amplifier - Complementary symmetry Push                            | h pull   |          |
|                | amplifier – Efficiency calculation - Biasing of FET amp                      | lifier - |          |
|                | Common source FET amplifier - Common drain FET am                            | plifier  |          |
|                | FEEDBACK AMPLIFIER & OSCILLATORS                                             |          |          |
|                | Concept of Feedback - Negative feedback - Forms of neg                       | vative   |          |
|                | feedback - Effect of negative feedback on bandwidth.                         | ,        |          |
| III            | distortion, noise and stability - Positive feedback - Barkh                  | ausen    |          |
|                | criterion - Generation of sinusoidal waves by a tuned LC                     | 1        | 13       |
|                | circuit - Classification of oscillators - Hartley oscillator -               |          |          |
|                | Colpitts oscillator - Phase shift oscillator - Weinbridge                    |          |          |
|                | oscillator – Frequency calculation - Astable, Monostable                     | and      |          |
|                | Bistable Multivibrators                                                      |          |          |
|                | OPERATIONAL AMPLIFIER                                                        |          |          |
| IV             | Typical stages of an Op Amp - Differential amplifier                         | (using   | 13       |
|                | transistor) and Classification - Common mode and Diffe                       | rential  |          |

| mode operations - CMRR - Realization of constant current         |  |
|------------------------------------------------------------------|--|
| source - Integrated circuit of operational amplifier - Ideal Op  |  |
| Amp and characteristics - Parameters of Op Amp (Input offset     |  |
| voltage, offset current, bias current and slew rate) - Inverting |  |
| Op Amp - Non inverting Op Amp - Differential Op Amp -            |  |
| A/D converter - D/A converter                                    |  |

#### (16 PPS 1E1 )

|   | OPERATIONAL AMPLIFIER                                          |    |
|---|----------------------------------------------------------------|----|
| V | Phase changer - Scale changer - Adder - Averager -             |    |
|   | Subtractor-Integrator - Differentiator - Solving differential  | 12 |
|   | equation - Comparator - Window detector - Schmitt trigger -    | 13 |
|   | Voltage follower - Voltage to current converter - Sample and   |    |
|   | hold circuit - Logarithmic amplifier - Constant current source |    |

Text Books

- Norman Lurch, (1981). Fundamentals Of Electronics. John Wiley & Sons, New York, (Units I V).
- Swaminathan Mathu, (1985). *Electronics Circuits And Systems*. 1<sup>st</sup> Edition, Howard W.Sams & Co, (Units I, IV & V).
- Bhargowa N.N. Kulshreshtha D.C. Gupta S.C. (2001). *Basic Electronics & Linear Circuits*.
   32<sup>nd</sup> Reprint, Tata Mc Graw-Hill Publishing Company Limited, New Delhi, (Units I III).

- Salivahanan S. Suresh kumar N. Vallavaraj A. (2003). *Electronic Devices & Circuits*. 10<sup>th</sup> Reprint, Tata McGraw Hill Publishing Company Limited, New Delhi.
- Robert F.Coughilin, (2001). *Operational Amplifiers & Linear Integrated Circuits*. 6<sup>th</sup> Edition, Pearson Education Inc, New Delhi.

| Department     | Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |          |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|
| Course         | MSc Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Effect                                                                    | ive from |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the year                                                                  | ar: 2016 |
| Subject Code : | 16 PPS 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Semes                                                                     | ter: II  |
| Title :        | Core IV: Statistical Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semes                                                                     |          |
| Hrs/Week:      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Credit                                                                    | : 4      |
| Objectives     | $\succ$ To understand the concepts of Statistical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |          |
|                | Mechanics and to apply these concepts to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |          |
|                | various physical phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |          |
| Unit           | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | Hrs      |
| Ι              | CONCEPTS OF STATISTICAL MECHANICS<br>Phase space – Volume in Phase space – Ensembles – I<br>Canonical ensemble – Canonical ensemble – Grand can<br>– ensemble – Uses of ensemble – Liouvilles theory<br>Postulate of equal a priori probability – Statistical equilit<br>– Thermal equilibrium – Mechanical equilibrium – P<br>equilibrium – Thermo dynamical quantities : entropy<br>enthalpy – Helmholtz free energy – Gibb's free energy<br>Chemical potential - Connection between statistical<br>thermo dynamical quantities | Micro,<br>onical<br>rem -<br>brium<br>article<br>opy –<br>ergy -<br>l and | 13       |
| II             | CLASSICAL STATISTICS<br>Microstates and Macro states – Classical Maxwell Boltz<br>distribution law – Most probable speed, Mean speed,<br>square speed, Root mean square speed - Princip<br>equipartition energy – Gibbs paradox – Partition function<br>its correlation with thermodynamic quantities. Pa<br>function and their properties, effect of shifting zero le<br>energy on partition function, mean energy, specific<br>entropy -comparison of ensemble – Equipartition theo<br>Partition function for real gas.         | zmann<br>Mean<br>ole of<br>on and<br>rtition<br>vel of<br>heat,<br>orem - | 13       |
| Ш              | <b>QUANTUM STATISTICS</b><br>Transition from classical statistical Mechanics to Qu<br>Statistical Mechanics – Indistinguishability in qu<br>statistics – Statistical weight or a priori probability – Ma<br>– The density matrix – Postulates – Condition for stat<br>equilibrium – Identical particles and symmetry requiren<br>Bose - Einstein distribution law – Fermi – dirac distri-<br>law - Evaluation of Constant $\alpha & \beta$ - Results of all<br>statistics.                                                        | antum<br>antum<br>atrices<br>istical<br>nent –<br>bution<br>three         | 13       |
| IV             | APPLICATION OF QUANTUM STATISTICS<br>Photon gas - Black body radiation and Planck radiat<br>Specific heat of solids – Einstein theory – Debye the<br>Bose Einstein condensation – Liquid Helium - Electron<br>Free electron model and electronic emission – Pauli's<br>of Para magnetism – White dwarfs.                                                                                                                                                                                                                          | tion –<br>eory –<br>Gas –<br>theory                                       | 13       |

|   | TRANSPORT PROPERTIES                                         |    |
|---|--------------------------------------------------------------|----|
|   |                                                              |    |
|   | Boltzmann transport equation – Thermal conductivity –        |    |
| V | Viscosity - Brownian movement - Onsager solutions -          | 13 |
|   | Fluctuation : Energy, Pressure – Ising model – Bragg William |    |
|   | approximation – One dimensional Ising model.                 |    |
|   |                                                              | 4  |

• Gupta, Kumar, (2003). *Statistical Mechanics*. Twentieth edition, Pragati Prakasahan Meerut, Begam Bridge Meerut, (Units I - V).

- Keiser Huang, Fundamentals of Statistical Mechanics. Revised edition.
- Agarwal K. Eisner, (1998). *Statistical Mechanics*. Second edition, New Age International Publishers, New Delhi.

| Department     | Physics                      |                |
|----------------|------------------------------|----------------|
| Course         | MSc Physics                  | Effective from |
|                |                              | the year: 2016 |
| Subject Code : | 16 PPS 205                   | Somostor: II   |
| Title :        | Core V: Quantum Mechanics-II | Semester. II   |
| Hrs/Week:      | 5                            | Credit: 4      |

| Objectives | > To familiarize with advanced concepts and            |  |
|------------|--------------------------------------------------------|--|
|            | methodology of quantum mechanics such as               |  |
|            | perturbation theory of time evaluation problems,       |  |
|            | relativistic quantum theory, quantization of fields    |  |
|            | and central force problems.                            |  |
|            | $\succ$ To understand the basic approximate methods in |  |
|            | molecular quantum mechanics                            |  |

| I       TIME DEPENDENT PERTURBATION         Schrodinger equation and general solution - Propagator-<br>Alteration of Hamiltonian, transitions and sudden<br>approximation - Perturbation solution for transition amplitude<br>- First order perturbation - Second order perturbation -<br>Harmonic perturbation - Transition to continuum states :<br>Fermi Golden rule -Scattering of a particle by a potential -<br>Absorption and Emission of Radiation       13         II <b>RELATIVISTIC QUANTUM MECHANICS</b><br>Klein Gordon equation - Plane wave solutions - Position<br>probability density and current density - Applications to the<br>study of energy levels of electron in a coulomb field - Dirac<br>equation - Probability and Current densities - Alpha , Beta<br>matrices and their properties - Plane wave solutions for Dirac<br>equation - Negative energy       13         III <b>RELATIVISTIC QUANTUM MECHANICS</b><br>Electromagnetic potentials: Magnetic moment of the electron<br>- Existence of electron spin - Spin-orbit energy -<br>Zitterbewegung – Dirac's equation of a central field force (H-<br>Atom) – Solution of Dirac's equation of a central field force<br>(H-Atom) –Hydrogen spectrum according to Dirac equation –<br>Covariant formulation of Dirac equation - Properties of<br>Gamma matrices       13         IV <b>QUANTIZATION OF FIELDS</b><br>Field - Quantization procedure for particles - Classical<br>formulation of Lagrangian and Hamiltonian equations of<br>motions - Quantum equation of the field - Quantization of the       13 | Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| II       RELATIVISTIC QUANTUM MECHANICS         Klein Gordon equation - Plane wave solutions - Position probability density and current density - Applications to the study of energy levels of electron in a coulomb field - Dirac equation - Probability and Current densities - Alpha , Beta matrices and their properties - Plane wave solutions for Dirac equation - Negative energy       13         III       RELATIVISTIC QUANTUM MECHANICS       13         Equation - Negative energy       RELATIVISTIC QUANTUM MECHANICS         Electromagnetic potentials: Magnetic moment of the electron - Existence of electron spin - Spin-orbit energy - Zitterbewegung – Dirac's equation of a central field force (H-Atom) – Solution of Dirac's equation of a central field force (H-Atom) – Hydrogen spectrum according to Dirac equation – Covariant formulation of Dirac equation - Properties of Gamma matrices       13         IV       IV       IV       IV       IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I    | <b>TIME DEPENDENT PERTURBATION</b><br>Schrodinger equation and general solution - Propagator-<br>Alteration of Hamiltonian, transitions and sudden<br>approximation - Perturbation solution for transition amplitude<br>- First order perturbation - Second order perturbation –<br>Harmonic perturbation – Transition to continuum states :<br>Fermi Golden rule -Scattering of a particle by a potential –<br>Absorption and Emission of Radiation | 13  |
| III       RELATIVISTIC QUANTUM MECHANICS         Electromagnetic potentials: Magnetic moment of the electron       –         Zitterbewegung – Dirac's equation of a central field force (H-       13         Atom) – Solution of Dirac's equation of a central field force (H-Atom) –Hydrogen spectrum according to Dirac equation –       13         Covariant formulation of Dirac equation -       Properties of Gamma matrices         IV       Rel QUANTIZATION OF FIELDS         Field - Quantization procedure for particles - Classical formulation of Lagrangian and Hamiltonian equations of motions - Quantum equation of the field - Quantization of the       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II   | <b>RELATIVISTIC QUANTUM MECHANICS</b><br>Klein Gordon equation - Plane wave solutions - Position<br>probability density and current density - Applications to the<br>study of energy levels of electron in a coulomb field - Dirac<br>equation - Probability and Current densities - Alpha , Beta<br>matrices and their properties - Plane wave solutions for Dirac<br>equation - Negative energy                                                    | 13  |
| IVQUANTIZATION OF FIELDS<br>Field - Quantization procedure for particles - Classical<br>formulation of Lagrangian and Hamiltonian equations of<br>motions - Quantum equation of the field - Quantization of the13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III  | <b>RELATIVISTIC QUANTUM MECHANICS</b><br>Electromagnetic potentials: Magnetic moment of the electron<br>– Existence of electron spin - Spin-orbit energy -<br>Zitterbewegung – Dirac's equation of a central field force (H-<br>Atom) – Solution of Dirac's equation of a central field force<br>(H-Atom) –Hydrogen spectrum according to Dirac equation –<br>Covariant formulation of Dirac equation - Properties of<br>Gamma matrices              | 13  |
| Schrodinger equation - Klein Gordon field - The Dirac field -<br>Creation, annihilation and number operators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV   | <b>QUANTIZATION OF FIELDS</b><br>Field - Quantization procedure for particles - Classical<br>formulation of Lagrangian and Hamiltonian equations of<br>motions - Quantum equation of the field - Quantization of the<br>Schrodinger equation - Klein Gordon field - The Dirac field -<br>Creation, annihilation and number operators                                                                                                                 | 13  |

(2)(16 PPS 205)

|   | MANY ELECTRON SYSTEMS                                          |    |
|---|----------------------------------------------------------------|----|
|   | One particle central force problem - Non interacting particles |    |
|   | and separation of variables - Reduction of the two particles   |    |
| V | problems - Two particles rigid rotor - Hydrogen atom - Bound   | 13 |
|   | state Hydrogen atom wave functions -Hydrogen like orbitals –   |    |
|   | LCAO - V.B Theory – Hartree Method - Hartree Fock, SCF         |    |
|   | method.                                                        |    |

- Mathews P.M. Venkatesan, *A Text Book Of Quantum Mechanics*. Tata McGraw Hill Company Ltd, New Delhi, (Unit I).
- Gupta, Kumar, Sharma, *Quantum Mechanics*. Pragathi Prakash Publications , Meerut, (Unit I).
- Aruldhas G. *Quantum Mechanics*. Prentice Hall India Company Pvt Ltd, New Delhi, (Units II & III).
- Satya Prakash R. (2007). *Advanced Quantum Mechanics*. Kedar Nath Ram Nath, Fifth revised edition, Meerut, (Unit -II).
- Chatwal G.R. Anand S.K. (2006). *Quantum Mechanics*. Himalaya Publishing Company, New Delhi, (Unit IV).
- Ira. N. Levine, *Quantum Chemistry*. Prentice Hall Company Ltd, New Delhi, (Unit V).

- Gupta S.L. Gupta I.D. Advanced Quantum Theory And Fields. SChand and Company Ltd, New Delhi.
- Atkins P.W. Quantum Mechanics. Oxford University Press, Oxford.
- Walter. A. Harrison, Applied Quantum Mechanics. Applied Publishers Ltd, Mumbai.
- Wu T.Y. Pauchy Hwang W.Y. *Relativistic Quantum Mechanics & Quantum Fields*. Allied Publishers Ltd, New Delhi.

| Department     | Physics                                          |                |
|----------------|--------------------------------------------------|----------------|
| Course         | MSc Physics                                      | Effective from |
|                |                                                  | the year: 2016 |
| Subject Code : | 16 PPS 206                                       | Somostor: II   |
| Title :        | Core VI: Electromagnetic Theory & Plasma Physics | Semester. II   |
| Hrs/Week:      | 5                                                | Credit: 4      |
| Objectives     | To become familiar with the determination of     |                |
|                | electric and magnetic fields                     |                |
|                | To study the importance of Maxwell's equation    |                |
|                | and the propagation of electromagnetic waves in  |                |
|                | different media                                  |                |
|                | To understand the fundamentals of plasma         |                |

| Unit | Content                                                                                                                                                                                                                                                                                     | Hrs |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι    | <b>ELECTROSTATICS AND MAGNETOSTATICS</b><br>Concept of charge - Coulomb's law - Gauss law - Multipole<br>expansion of charge distribution - Dielectric and its<br>polarization - Electric displacement D - Polarization of non-<br>polar molecules – Lorentz equation for molecular field - | 13  |

|     | Claussius Mossotti relation - Polarisation of polar molecules-           |    |
|-----|--------------------------------------------------------------------------|----|
|     | Langevin equation-Debye relation and molecular structure -               |    |
|     | Current density - Ampere's law of force - Biot Savart law -              |    |
|     | Ampere's circuital law - Magnetic scalar and vector potential -          |    |
|     | Application to magnetic dipole                                           |    |
|     | FIELD EQUATION AND CONSERVATION LAWS                                     |    |
|     | Equation of continuity - Displacement current <b>D</b> - Maxwell's       |    |
|     | equations - Energy in electromagnetic field - Poynting vector -          |    |
| TT  | Momentum in electromagnetic fields - Electromagnetic                     | 12 |
| 11  | potential <b>A</b> and $\mathbf{\phi}$ - Maxwell's equations in terms of | 13 |
|     | electromagnetic potential - Concept of Gauge - Lorentz Gauge             |    |
|     | - Coulomb Gauge - Retarded potential - Lienard Wiechart                  |    |
|     | potentials                                                               |    |
|     | PROPAGATION AND INTERACTION OF PLANE                                     |    |
|     | ELECTROMAGNETIC WAVES                                                    |    |
|     | EM waves in free space –Propagation of E.M waves in                      |    |
| III | Isotropic dielectrics - Anisotropic dielectrics in conducting            |    |
|     | media and in ionized media - Boundary conditions - Reflection            | 13 |
|     | and Refraction of EM waves - Fresnel's formula - Brewster's              |    |
|     | law and polarization of E.M.W - Total internal reflection -              |    |
|     | Reflection from a metallic surface - Propagation of EM waves             |    |
|     | between conducting planes                                                |    |

# (2)(16 PPS 206)

| IV | <b>RELATIVISTIC ELECTRODYNAMICS</b><br>Four vectors and tensors - Transformation equations for $\rho$ and $J$ - Transformation equation for $A$ and $\varphi$ - Electromagnetic field tensor - Transformation equation for $E$ and $B$ - Covariance of Maxwell's equations : Four vector form & four tensor form - Covariance and transformation law of Lorentz force                                                                                                                                                                                                               | 13 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V  | <b>FUNDAMENTALS OF PLASMA</b><br>Occurrence of Plasma in nature - Definition of Plasma -<br>Concept of Temperature - Debye shielding - Plasma parameter<br>- Criteria for Plasma - Relation of Plasma physics to ordinary<br>EM waves - Plasma Oscillations - Fluid equation of motion –<br>Convective derivative – The stress tensor – Collisions –<br>Equation of continuity – Equation of state – Complete set of<br>fluid equations – Fluid drifts perpendicular to B - Fluid drifts<br>parallel to B – Plasma approximation – Applications of Plasma<br>Physics(Simple ideas). | 13 |

Text Books

 Chopra K.K. Agarwal G. C. (1989). *Electromagnetic Theory*. 5<sup>th</sup> edition K. Nath & Co, Meerut, (Units I – IV). • Chen F.F. Introduction To Plasma Physics And Controlled Fusion. 3rd edition, Plenium press, Newyork, (Unit V).

- David. J. Griffiths, *Introduction To Electrodynamics*. 2<sup>nd</sup> edition, Prentice Hall of India Private Ltd, New Delhi.
- Gupta Kumar Singh, (1998). *Electrodynamics*. 13<sup>th</sup> edition, Pragati Prakasam, Meerut.
  Sen S. N. (1999). *Plasma Physics*. 3<sup>rd</sup> edition, Pragati Prakasam, Meerut.

| Department     | Physics                                                                              |                |
|----------------|--------------------------------------------------------------------------------------|----------------|
| Course         | MSc Physics                                                                          | Effective from |
|                |                                                                                      | the year: 2016 |
| Subject Code : | 16 PPS 207                                                                           | Somostor: II   |
| Title :        | Core VII: Electronic Communications                                                  | Semester. II   |
| Hrs/Week:      | 5                                                                                    | Credit: 4      |
| Objectives     | $\succ$ To understand the various modulation                                         |                |
|                | techniques.                                                                          |                |
|                | To understand the generation of microwaves.                                          |                |
|                | ➤ To understand the basics of satellite                                              |                |
|                | communication.                                                                       |                |
|                | To understand RADAR communication systems.                                           |                |
|                | To understand the building blocks of internet<br>and e - mail communication systems. |                |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| I    | ANALOG COMMUNICATION<br>Power and energy in a signal-model of communication system-<br>modulation and frequency translation - Amplitude Modulation:<br>DSB-SC, SSB, VSB and conventional AM - Superhetrodyne AM<br>receiver - Frequency Modulation: Modulation index, spectrum and<br>bandwidth, direct generation and demodulation, superhetrodyne<br>FM receiver - Noise: noise power spectral density, white, thermal<br>and shot noise, equivalent noise temperature - Signal to noise<br>ratio and noise figure | 13  |
| II   | PULSEMODULATIONANDDIGITALCOMMUNICATIONPulse Modulation: Sampling theorem, informal justification, pulse<br>amplitude modulation, time division multiplexing and pulse time<br>modulation - Pulse code Modulation: Quantization Error,<br>bandwidth, companding and delta modulation - Data<br>Transmission: Base band and radio frequency transmission, FSK                                                                                                                                                          | 13  |

|     | and PSK - Information Theory: Rate and measurement, channel capacity, Noisy and noiseless channel - Shannon's theorem                                                                                                                                                                                                                                   |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| III | MICROWAVE SYSTEMS<br>Microwaves - Multicavity klystron - Reflex klystron - Magnetron -<br>Travelling wave tube<br>SATELLITE SYSTEMS<br>Kepler's law - Orbits - Geostationary orbits - Power systems -<br>Altitude control- Satellite station keeping - Antenna look angles -<br>Limits of visibility- Frequency plans and polarization -<br>Transponder | 13 |

| IV | <b>RADAR SYSTEMS</b><br>Fundamentals - Radar performance factors - Pulsed radar systems<br>- Antennas and Scanning - Display methods - Search radar<br>systems and tracking radar systems - Moving target indication -<br>Radar beacons - CW Doppler radar - Frequency modulated CW<br>radar - Phased array radars - Planar array radars                                                                                                                                                                   | 13 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V  | INTERNET SYSTEMS (ELEMENTARY IDEAS ONLY)<br>The wired world of the Internet - Information through the Internet<br>-Linking net works to the Internet - TCP/IP - Internet addresses<br>and domains - Anatomy of web connection - Internet file types –<br>DNS - Routers - Client/Server Architecture - Connectivity<br>between Computer and Internet - ISDN<br>E-MAIL SYSTEMS (ELEMENTARY IDEAS ONLY)<br>Anatomy of mail message - E mail through Internet - E mail<br>software and E-mail between networks | 13 |

- Swaminathan Madhu, (1985). *Electronic Circuits And Systems*. 1<sup>st</sup> Edition, H.W.Sams, (Units I & II).
- Kennedy, Davis, (2002). *Electronic Communication Systems*. 16<sup>th</sup> Edition, Tata McGraw-Hill, New Delhi, (Units III & IV).
- Dennis Roddy, John Coolen, (2000). *Electronic Communications*. 18<sup>th</sup> Edition, Prentice-Hall of India, New Delhi, (Unit III).
- Preston Gralla, (1996). *How The Internet Works*. 1<sup>st</sup> Edition, Ziff- Davis press, (Unit V).

- Louis E.Frenzel, (2001). *Communication Electronics*. 3<sup>rd</sup> Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi.
- Wayne Tomasi, (1998). *Electronic Communication Systems*. 3<sup>rd</sup> Edition, Pearson Education Asia, New Delhi.
- Robert J. Schoenbeck, (1992). *Electronic Communication Systems*.3<sup>rd</sup> Edition Universal Book Stall.
- Wayne Tomasi, Vincent F.Alisouskas, (1988). *Telecommunications*. Printice- Hall International, New Delhi.

| Department     | Physics                                                                              |                               |
|----------------|--------------------------------------------------------------------------------------|-------------------------------|
| Course         | MSc Physics                                                                          | Effective from the year: 2016 |
| Subject Code : | 16 PPS 2N1                                                                           | Somostor: II                  |
| Title          | : Non Major Elective : Non Conventional Energy Sources                               | Semester. II                  |
| Hrs/Week:      | 1                                                                                    | Credit: 2                     |
| Objectives     | To give awareness on the utilization of solar<br>energy, wind energy & ocean energy. |                               |
|                | To give a knowledge on Biomass gasifiers.                                            |                               |
|                | To study the nature of geothermal fields and its significance and drawbacks          |                               |

| Unit | Content                                                                                                                                                                                                                              | Hrs |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| I    | <b>SOLAR ENERGY</b><br>Solar radiation at the earth surface – Physical<br>principles of the conversion of solar radiation into heat –<br>Solar water heating – Solar cooking.                                                        | 3   |
| Ш    | WIND ENERGY<br>Nature of the wind – Power in the wind – Site<br>selection consideration – Types of wind mechanics:<br>Horizontal – Axial machines – Vertical axis mechanics –<br>Advantages and disadvantages of WESS.               | 2   |
| III  | OCEAN ENERGY<br>Tidal energy – Ocean thermal energy conversion<br>(OTEC) – Methods of ocean thermal electric power<br>generation – Closed cycle OTEC system – Open cycle OTEC<br>system.                                             | 2   |
| IV   | <b>ENERGY FROM BIOMASS</b><br>Biomass – Biofuels – Biomass Conversion<br>Technologies: Wet processes – Dry processes – Thermal<br>gasification of Biomass – Classification of Biomass gasifiers.                                     | 3   |
| V    | GEOTHERMAL ENERGY<br>A typical geothermal field – Estimates of<br>Geothermal power – Nature of Geothermal fields –<br>Geothermal sources – Advantages and disadvantages of<br>Geothermal energy – Applications of Geothermal Energy. | 3   |

• G.D.Rai, (2002). Non-Conventional Energy Sources. Khanna Publishers, Delhi, (Units I-V).

- G.D.Rai, (1980). *Solar Energy Utilization*. Khanna Publishers, Delhi, 1<sup>st</sup> edition.
- S.P. Sukhatme, (2000). *Solar Energy Principles of Thermal Collection and Storage*. Tata McGraw Hill, New Delhi, 2<sup>st</sup> edition.

|                | T                                           |                |
|----------------|---------------------------------------------|----------------|
| Department     | Physics                                     |                |
| Course         | MSc Physics                                 | Effective from |
|                |                                             | the year: 2016 |
| Subject Code : | 16 PPS 2N2                                  | Somestor: II   |
| Title          | : Non Major Elective: Communication Systems | Semester. II   |
| Hrs/Week:      | 1                                           | Credit: 2      |
| Objectives     | To gain knowledge on Digital and data       |                |
|                | communication systems.                      |                |
|                | To understand the functions of Modem,       |                |
|                | Networking, Telemetry and Facsimile.        |                |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| I    | <b>DIGITAL AND DATA COMMUNICATION</b><br>Elements of Digital and Data Communication - Digital<br>information in communication - Basic block diagram of data<br>communication system – Coding - ASCII coding.                                                                                                                                                                                                                   | 3   |
| п    | <b>DATA TRANSMISSION CIRCUITS</b><br>Data communication system – data communication<br>Topology – Transmission types – Transmission modes –<br>Characteristics of data transmission circuits.                                                                                                                                                                                                                                  | 2   |
| III  | MODEM<br>Need and Function of modem – Modem for non telephone<br>links - Modem for interconnection – Modem transmission<br>speed – Modem modulation method.                                                                                                                                                                                                                                                                    | 2   |
| IV   | <b>NETWORK</b><br>Network application – Network organization – Gateways<br>routers and bridges – LAN, MAN, WAN.                                                                                                                                                                                                                                                                                                                | 3   |
| V    | <b>TELEMETRY AND ELECTRONIC EXCHANGE,</b><br><b>FACSIMILE</b><br>Basic telemetry system – Classification phone system – Local<br>loop on hook and off hook – Trunk - Super trunk - Hierarchy<br>of a telephone network - Pulse delay – Phone dialing – Phone<br>dialing - Ring back – Operation the central office and loop<br>supervision- pulse dialing and mechanical switching –<br>Facsimile – Basic facsimile operation. | 3   |

 Gautam. A.K, (2004). Communication systems II. 2<sup>nd</sup> Revised edition, S.K. Kataria and Sons, Delhi.

Reference Books

 Kennedy, Davis, (2002). *Electronic Communication Systems*. 16<sup>th</sup> Edition, Tata McGraw-Hill, New Delhi.

| Department                | Physics                                                                 |                               |
|---------------------------|-------------------------------------------------------------------------|-------------------------------|
| Course                    | MSc Physics                                                             | Effective from the year: 2016 |
| Subject Code :<br>Title : | 16 PPS 208<br>Core XIII: General Physics Lab I                          | Semester: I & II              |
| Hrs/Week:                 | 4                                                                       | Credit: 4                     |
| Objectives                | To become familiar with the techniques of advanced General Experiments. |                               |

| Cycle | Content                                                                                                                                                                                                                                                                                                                                                            | Hrs |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι     | <ol> <li>Young's modulus - Elliptical fringes - Cornu's method</li> <li>Viscosity of a liquid - Mayor's oscillating disc</li> <li>Thermal conductivity - Forbe's method</li> <li>Temperature coefficient and band gap energy of a Thermistor</li> <li>Measurement of Spot size, Divergence &amp; Wavelength of a<br/>Laser beam</li> </ol>                         | 24  |
| Ш     | <ol> <li>Young's modulus - Hyperbolic fringes - Cornu's method</li> <li>Specific heat of a liquid - Ferguson's method</li> <li>λ, d λ &amp; Thickness of FP etalon - Fabryperot Interferometer</li> <li>Rydberg's constant - Hydrogen spectrum</li> <li>Refractive index of a liquid &amp; Absorption coefficient of transparent Material -Laser Source</li> </ol> | 24  |
| III   | <ol> <li>Rydberg's constant - Solar spectrum</li> <li>Hall effect in Semiconductors</li> <li>Study of Birefringence - Channel spectrum method or<br/>Diffraction - Hartmann's Interpolation</li> <li>Stefan's constant</li> <li>Biprism - Determination of λ of monochromatic source &amp;<br/>thickness of a transparent sheet</li> </ol>                         | 24  |

- Worsnop, Flint, (1971). Advanced Practical Physics. Asia Publishing house.
  Singh S.P. (Vol. I & Vol. II), (1998). Advanced Practical Physics. 11<sup>th</sup> Edition Pragati Prakashan, Meerut.

| Department     | Physics                                           |                |
|----------------|---------------------------------------------------|----------------|
| Course         | MSc Physics                                       | Effective from |
|                |                                                   | the year: 2016 |
| Subject Code : | 16 PPS 209                                        | Semester: I &  |
| Title :        | Core IX: Electronics Lab I                        | II             |
| Hrs/Week:      | 4                                                 | Credit: 4      |
| Objectives     | $\succ$ To understand the action of semiconductor |                |
|                | devices, amplifiers and oscillators.              |                |

| Cycle | Content                                                                                                                                                                                                                                                                          | Hrs |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι     | <ol> <li>CRO - Familiarization: Lissajous figures, Measurement<br/>of Voltage, Phase and Frequency</li> <li>I.C - Regulated power supply</li> <li>RC coupled amplifier - Double stage</li> <li>Feedback amplifier</li> <li>FET amplifier - Common Source</li> </ol>              | 24  |
| Π     | <ol> <li>Emitter follower</li> <li>UJT - Characteristics</li> <li>FET amplifier - Common Drain</li> <li>Phase shift Oscillator using opamp</li> <li>Power amplifier - Push Pull</li> </ol>                                                                                       | 24  |
| III   | <ol> <li>SCR characteristics</li> <li>Astable Multivibrator using 555 timer IC and Op amp</li> <li>Power amplifier - Complementary symmetry</li> <li>UJT - Relaxation Oscillator</li> <li>Wave shaping circuits - Differentiator, Integrator,<br/>Clipper and Clamper</li> </ol> | 24  |

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill, New Delhi.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2<sup>nd</sup> Edition, McGraw Hill, New Delhi.
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India Ltd, New Delhi.
- Bhargowa N.N. (1984). Basic Electronics And Linear Circuits. McGraw Hill, New Delhi.

| Department     | Physics                                               |                |
|----------------|-------------------------------------------------------|----------------|
| Course         | MSc Physics                                           | Effective from |
|                |                                                       | the year: 2016 |
| Subject Code : | 16 PPS 310                                            | Semester: III  |
| Title :        | Core X : Molecular Spectroscopy                       | Semester. III  |
| Hrs/Week:      | 5                                                     | Credit: 4      |
| Objectives     | ➢ To familiarize with Symmetry operations and         |                |
|                | Group theory.                                         |                |
|                | ➢ To understand the origin of Microwave, Raman        |                |
|                | and IR spectroscopy.                                  |                |
|                | $\succ$ To learn the conditions for resonance, theory |                |
|                | and applications of NMR, ESR, NQR and                 |                |
|                | Mossbaurer Spectroscopy.                              |                |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι    | <b>MOLECULAR SYMMETRY &amp; GROUP THEORY</b><br>Group - Group Multiplication table - Classes - Symmetry<br>elements, Symmetry operations & Point groups - Symmetry<br>operations on molecular motions Reducible & Irreducible<br>representations - The Great orthogonality theorem - Symmetry<br>species & Character tables - $C_{2V}$ & $C_{3V}$ Representations of a group<br>- Number of normal modes of various symmetry types - Symmetry<br>of group vibrations | 13  |
| II   | MICROWAVE SPECTROSCOPY<br>Theory of Microwave Spectroscopy - Classification of molecules -<br>Diatomic molecule and the measurement of internuclear distance -<br>Linear triatomic molecules and the determination of the bond<br>lengths - Microwave spectra of Symmetric top molecules -<br>Experimental technique                                                                                                                                                 | 13  |
| Ш    | RAMAN SPECTROSCOPY<br>Quantum theory of Raman effect - Classical theory of Raman<br>effect - Pure Rotational Raman spectra - Vibrational Raman<br>spectra - Structure determination from Raman & IR spectroscopy -<br>Techniques & Instrumentation<br>IR SPECTROSCOPY<br>Vibrating diatomic molecule - Diatomic Vibrating Rotator -<br>Vibrations of Polyatomic molecules - Fourier transform IR<br>spectroscopy                                                     | 13  |
| IV   | <b>RESONANCE SPECTROSCOPY</b><br>Theory of Nuclear Magnetic Resonance - Conditions for<br>Resonance - Bloch equation and their Steady State solutions -<br>Chemical shift - Experimental techniques: Continuous & Pulse<br>method - Applications - Concept and theory of Electron Spin<br>Resonance - Relaxation phenomenon - Experimental technique -<br>Applications                                                                                               | 13  |

|   | NQR & MOSSBAUER SPECTROSCOPY                                                                                                                                                                                                                                                                                                                                                                                                |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V | Theory of NQR - Energy levels for molecules of axial and non<br>axial symmetry - Experimental techniques and applications -<br>Principle and theory of Mossbauer effect - Mossbauer<br>instrumentation - Applications - Electronic spectroscopy - Frank<br>Condon principle - Vibrational coarse structure of electronic<br>spectra - Fortrat diagram - Applications of electronic spectra to<br>transition metal complexes | 13 |

- Albert Cotton F. (1971). *Chemical Application Of Group Theory*. 2<sup>nd</sup> edition, Wiley Interscience, New York, (Unit I).
- Banwell C.N. Mccash E.M. (2001). *Fundamental Of Molecular Spectroscopy*. TataMcGraw Hill Publishing Company Ltd., New Delhi, (Units II & III).
- Aruldhas G. (2001). *Molecular Structure And Spectroscopy*. Prentice Hall of India Pvt Ltd New Delhi, (Units IV & V).

- Barrow G.M. Introduction To Molecular Spectroscopy. Prentice Hall of India Pvt Ltd, New Delhi.
- Chatwal and Anand, A Text Book Of Spectroscopy. Prentice Hall of India Pvt Ltd, New Delhi.
- Manas Chanda, *Atomic Structure And The Chemical Bond*. 2<sup>nd</sup> edition, Tata McGraw Hill Publishing Company, New Delhi.

| Department     | Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Course         | MSc Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Effective                                                                                                                                          | e from |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the year:                                                                                                                                          | 2016   |
| Subject Code : | 16 PPS 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semester                                                                                                                                           | :: III |
| little :       | Core XI: Condensed Matter Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cradit: 1                                                                                                                                          |        |
| Objectives     | J<br>To provide coherent perspective of the physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cleuit. 4                                                                                                                                          |        |
| Objectives     | concepts and theories related with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |        |
|                | characterization of materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |        |
| Unit           | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    | Hrs    |
| Ι              | <b>GEOMETRY OF CRYSTALS</b><br>Basis of Crystal structure – Unit cell – Primitive<br>Symmetry operations – Translation operations, Point op<br>& Hybrid operations – Crystal types – Two an<br>dimensional crystal lattices – Common crystal struct<br>Indices of a lattice direction and a lattice plane – Crystal<br>– Primary bonds – Covalent, Metallic, Ionic bonding –<br>Waals bond – Hydrogen bond (formation & properties)<br>energy of NaCl molecule – Calculation of Lattice er<br>ionic crystal – Calculation of Madelung constant of<br>crystals – Reciprocal lattice – Geometrical construct<br>Reciprocal lattice – Bragg's law – Laue's interpretation of<br>diffraction by crystals – Measurement of diffraction par<br>crystals – Ewald construction – Experimental methods<br>defects Dislocations and Color centers(Basic ideas only) | cell –<br>berations<br>d three<br>ctures –<br>bonding<br>van der<br>– Bond<br>hergy of<br>of ionic<br>ction of<br>of X ray<br>tterns of<br>– Point | 13     |
| П              | <b>THERMAL PROPERTIES &amp; LATTICE VIBRATIO</b><br><b>SOLIDS</b><br>The specific heat – Lattice specific heat – Classical<br>Einstein theory – The Debye theory – Born's modific<br>Thermal conductivity – Lattice thermal conductivity –<br>mean free path – The umklapp processes – One line of<br>the linear diatomic lattice – Quantization of lattice vibr<br>Experimental determination of dispersion relation –<br>scattering of neutrons                                                                                                                                                                                                                                                                                                                                                                                                         | heory -<br>cation –<br>Phonon<br>atoms –<br>rations –<br>Inelastic                                                                                 | 13     |
| III            | <b>FREE ELECTRON THEORY AND BAND THEORY</b><br><b>SOLIDS</b><br>Classical free electron theory of Drude-Lorentz – Som<br>quantum theory (Energy levels in one and three dimen<br>Fermi Dirac distribution – Density of states – Fermi e<br>Wave functions in a periodic lattice and the Bloch the<br>Behaviour of an electron in a periodic potential (Kronig<br>model) – Brillouin zone – Number of possible wave func<br>a band - Motion of electrons in one dimensional<br>potential (crystal momentum, velocity, effective mass, r<br>effective mass and holes)                                                                                                                                                                                                                                                                                       | Y OF<br>mmerfeld<br>sions) –<br>energy –<br>eorem –<br>g Penney<br>ctions in<br>periodic<br>negative                                               | 13     |
| [              | FEDDA ELECTDIC AND MACHETIC DRAPEDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IES OF                                                                                                                                             |        |
| IV             | SOLIDS<br>Ferroelectric crystals – Properties of Rochelle salt and<br>- Polarization Catastrophe – Ferroelectric dom<br>Piezoelectricity – Langevin's theory of Diamagnetis<br>Paramagnetism – Quantum theory of Diamagnetis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaTiO <sub>3</sub><br>bains $-$<br>sm and<br>sm and                                                                                                | 13     |

|   | Paramagnetism – Cooling by adiabatic demagnetization - Weiss<br>theory of Ferromagnetism - Ferromagnetic domains – Neel                                                                                                                                                                                                                                      |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | model of Antiferromagnetism – Neel model of Ferrimagnetism                                                                                                                                                                                                                                                                                                   |    |
| V | SUPERCONDUCTORS<br>Mechanism of Superconductors – Effects of magnetic field –<br>Critical current – Meissner effect – Type I and Type II<br>Superconductors - London equations - Thermodynamics of<br>Superconductors - BCS theory - Quantum tunneling -<br>Josephson's tunneling - Theory of AC & DC Josephson effect -<br>High temperature Superconductors | 13 |

- Kittel C. (2004). *Introduction to Solid State Physics*. Revised 7<sup>th</sup> edition, John Wiley & sons, New York, (Unit-I).
- Srivastava J.P. (2001). *Elements of Solid State Physics*. 6<sup>th</sup> Edition, Prentice hall of India, , New Delhi, (Unit-I).
- Singhal R.L. (1989). *Solid State Physics*. 4<sup>th</sup> edition, Kedarnath Ramnath & Co, Meerut, (Unit-II).
- Pillai S.O. (2001). *Solid State Physics*. 4<sup>th</sup> Edition, New Age international (P) Ltd, NewDelhi, (Units III V).

- Richard Christman J. (1998). *Fundamentals Of Solid State Physics*. 1<sup>st</sup> Edition, Library of congress cataloguing.
- Decker A. J. (1963). *Solid State Physics*. 1<sup>st</sup> Edition, Macmillan & Co, Madras.

| Department   | Physics                                                                                                  |           |        |
|--------------|----------------------------------------------------------------------------------------------------------|-----------|--------|
| Course       | MSc Physics                                                                                              | Effective | e from |
|              |                                                                                                          | the year: | 2016   |
| Subject Code | e: 16 PPS 412                                                                                            | Semester  | r. IV  |
| Title        | : Core XII: Lasers & Non-Linear Optics                                                                   | bemester  |        |
| Hrs/Week:    | 5                                                                                                        | Credit: 4 |        |
| Objectives   | To study the basic principle and characteristics                                                         |           |        |
|              | of Lasers.                                                                                               |           |        |
|              | To gain knowledge about the action of various                                                            |           |        |
|              | types of Lasers, performance improvement and                                                             |           |        |
|              | their applications.                                                                                      |           |        |
|              | > To become familiar with the ideas and concepts                                                         |           |        |
| <b>T</b> T • | of Non-linear optics and Laser Spectroscopy.                                                             |           | TT     |
| Unit         |                                                                                                          |           | Hrs    |
|              | BASIC PRINCIPLES OF LASERS                                                                               | 4         |        |
|              | Energy levels - Thermal equilibrium - Relationship (                                                     | between   |        |
|              | Condition for light amplification Line shape fun                                                         | ssions -  |        |
| Ι            | Condition for light amplification - Line shape fun<br>Population inversion Pumping methods Threshold con | dition -  | 13     |
|              | Critical population inversion Line broadening                                                            | Cavity    |        |
|              | configurations - Modes - Laser rate equations for two t                                                  | three &   |        |
|              | four level systems                                                                                       | unce a    |        |
|              | LASER CHARACTERISTICS                                                                                    |           |        |
|              | Spatial & Temporal coherence - Directional                                                               | litv -    |        |
|              | Monochromaticity - Intensity                                                                             | iity      |        |
|              | TYPES OF LASERS                                                                                          |           | 10     |
| 11           | Ruby laser - Nd YAG laser - Helium Neon laser - Carbon                                                   | dioxide   | 13     |
|              | laser - Semiconductor diode laser - Excimer laser - Dye                                                  | laser -   |        |
|              | Chemical laser - X ray laser - Free electron laser - Fiber                                               | laser -   |        |
|              | Color center laser                                                                                       |           |        |
|              | PERFORMANCE IMPROVEMENT OF LASER                                                                         |           |        |
| TTT          | Q switching - Methods of Q switching - Peak power                                                        | - Laser   |        |
| 111          | amplifiers - Mode locking - Distributed feedback laser                                                   |           | 13     |
|              | APPLICATIONS OF LASER                                                                                    |           | 15     |
|              | Material working - Isotope separation - Hologra                                                          | aphy -    |        |
|              | Measurement of distance - Laser in medicine                                                              |           |        |
|              | NON-LINEAR OPTICS                                                                                        |           |        |
|              | Harmonic generation - Second harmonic generation -                                                       | Phase     |        |
|              | matching Third harmonic generation - Optical m                                                           | ixing -   |        |
|              | Parametric generation of light - Self focusing of light                                                  |           | 10     |
| IV           | MULTIPHOTON PROCESSES                                                                                    |           | 13     |
|              | Multiquantum Photoelectriceffect - Twophoton pr                                                          | ocesses   |        |
|              | (Experiments) - Three photon processes - Second ha                                                       | armonic   |        |
|              | generation - Parametric generation - Parametric light Osc                                                | mator -   |        |
|              | Frequency up conversion - Phase conjugate optics                                                         |           |        |
|              |                                                                                                          |           | (CONTD |

(2) (16 PPS 412)

| Rayleigh and Raman scattering - Stimulated Raman effect - Hyper  |  |
|------------------------------------------------------------------|--|
| Raman effect (Classical treatment) - Coherent Anti Stokes Raman  |  |
| Scattering - Spin flip Raman Laser - Photo acoustic Raman        |  |
| Spectroscopy - Saturation absorption Spectroscopy - Doppler free |  |
| two photon Spectroscopy - Multi photon ionization - Single atom  |  |
| detection with lasers - Laser cooling and Trapping of neutral    |  |
| atoms                                                            |  |

- Avadhanulu M.N. (2001). *Lasers Theory And Applications*. S.Chand and Company Ltd, New Delhi, (Units I III).
- Laud B.B. (2001). *Lasers And Nonlinear Optics*. 2<sup>nd</sup> Edition, New age international private Ltd, New Delhi, (Units III V).

- William T. Silfvast, (1998). *Laser Fundamentals*. (Cambridge University Press), First South Asian paperback Edition.
- Ghatak, Thyagarajan, Lasers Theory And Applications. Macmillan India Ltd.
- Ralf Menzel, (2001). *Photonics*. Springer International Edition.
- Abbi S.C. Ahmad S.A. (2001). *Non Linear Optics And Laser Spectroscopy*. Narosa publishing house, Narosa.

| Department   | Physics                                                  |                |
|--------------|----------------------------------------------------------|----------------|
| Course       | MSc Physics                                              | Effective from |
|              |                                                          | the year: 2016 |
| Subject Code | : 16 PPS 413<br>: Core XIII: Nuclear & Particle Physics  | Semester: IV   |
|              |                                                          |                |
| Hrs/Week:    | 5                                                        | Credit: 4      |
| Objectives   | $\succ$ To study the nuclear structure and properties of |                |
|              | nuclei through nuclear models.                           |                |
|              | $\succ$ To understand the nuclear reactions and to get   |                |
|              | an insight into the elementary particles.                |                |
| Unit         | Content                                                  | Hrs            |

| Ι   | <b>TWO BODY PROBLEM AND NUCLEAR FORCES</b><br>Deutron - Properties - Ground state of Deutron - Neutron Proton<br>scattering at low energies - Scattering length and effective range -<br>Spin dependence of n p forces - Tensor forces - Exchange forces -<br>Nuclear forces - Properties of nuclear forces - Yukawa theory of<br>nuclear forces                                                                                                                                                  | 13 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Π   | NUCLEAR MODELS<br>Liquid drop model - Bohr Wheeler's theory - Shell model - Magic<br>numbers - Magnetic moments and the Shell model - Prediction of<br>angular momenta of nuclear ground states by Shell model -<br>Collective model - Vibrational and Rotational states - Elementary<br>ideas of Unified and Superconductivity model                                                                                                                                                             | 13 |
| III | NUCLEAR DISINTEGRATION<br>Law of radioactive decay - Alpha ray emission - Gamow's theory<br>of alpha decay - Alpha ray energies and fine structure - Alpha<br>disintegration energy - Beta theory - Fermi's theory of beta<br>decay - Fermi and G.T Selection rules - Parity in beta decay -<br>Helicity - Electron capture - Gamma decay - Theory of angular<br>correlation of successive radiation - Internal conversion - Angular<br>momentum and Parity of excited levels                     | 13 |
| IV  | NUCLEAR FISSION AND FUSION REACTORS<br>Fission and Nuclear structure - Controlled fission reactions -<br>Fission reactors - Radioactive fission products - A natural fission<br>reactor - Basic fusion processes - Characteristics of fusion - Solar<br>fusion - Controlled fusion reactors                                                                                                                                                                                                       | 13 |
| V   | <b>ELEMENTARY PARTICLES</b><br>General classification of Elementary particles - Conservation law<br>and selection rules for production and decay of particles - CPT<br>theorem - Hadron classification according to Eight foldway -<br>Gellmann Okuba mass formula for Baryons - Quarks - Quantum<br>numbers - Quark content of Baryons and Mesons - Unification of<br>fundamental forces of nature - Unification of Weak and E.M<br>Interactions - Qualitative ideas of Salam and Weinberg model | 13 |

(2) (16 PPS 413)

(CONTD.....2)

Text Books

- Tayal D.C. (2008). *Nuclear Physics*. 5<sup>th</sup> edition, Himalaya Publishing house, Mumbai, (Units I IV).
- Pandya M.L. Yadav R.P.S. (1989). *Elements Of Nuclear Physics*. 5<sup>th</sup> Edition, Kedar Nath Ram Nath, Meerut, (Units I IV).
- Atam P.Arya, (1974). *Elementary Modern Physics*. Addison Wesley Publishing Co, (Units III & IV).
- Raymond A.Serway, Clement J.Moses, Curt A. Moyer, *Modern Physics*. 2<sup>nd</sup> Edition, Saunders College publishing (Harcourt Brace College publishers), (Units IV & V).

Reference Books

• Srivastava B.N. (1971). Basic Nuclear Physics. 12th edition, Pragathi Prakashan, Meerut.

• Kenneth S.Krane, (1988). *Introductory Nuclear Physics*. 2<sup>nd</sup> edition, John Wiley & sons, New York.

| Department     | Physics                                              |                |
|----------------|------------------------------------------------------|----------------|
| Course         | MSc Physics                                          | Effective from |
|                |                                                      | the year: 2016 |
| Subject Code : | 16 PPS 4E3                                           |                |
| Title :        | Major Elective III: Microprocessor & Object-Oriented | Semester: IV   |
|                | Programming With C++                                 |                |
| Hrs/Week:      | 5                                                    | Credit: 5      |
| Objectives     | ➢ To know the architecture and instruction set of    |                |
|                | the Microprocessor Intel 8085.                       |                |
|                | $\succ$ To familiarize the method of interfacing of  |                |
|                | different programmable devices.                      |                |
|                | ➢ To become familiar with the C++ programming        |                |
|                | language.                                            |                |
|                | ➤ To apply the C++ language to solve problems in     |                |
|                | Physics.                                             |                |

| Unit | Content                                                                                                                                                                                                                                                                                                  | Hrs |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι    | MICROPROCESSOR FUNDAMENTALS<br>8085 Microprocessor pin diagram & functions - Architecture -<br>Addressing modes - Instruction set - Data transfer instructions -<br>Arithmetic instructions - Logical and Branch instructions - Stack,<br>I/O & Machine control instructions - Subroutine ,Conditional & | 13  |

|     | Call instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| II  | MICROPROCESSOR PROGRAMMING & INTERFACING<br>Steps involved in Microprocessor programming - Straight line<br>programs -Looping programs - Mathematical programs -<br>Interfacing with ROM & RAM - I/O interfacing basics -<br>Interfacing with practical I/O ports - Synchronizing I/O data<br>transfers using Interrupts - Address decoding                                                                                                                                                                                                                                 | 13 |
| III | <ul> <li>PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING</li> <li>Object Oriented Programming Paradigm - Basic concepts of</li> <li>Object Oriented Programming - Benefits of OOP</li> <li>CLASSES &amp; OBJECTS</li> <li>Specifying a Class - Defining Member functions - Nesting of</li> <li>Member functions - Private Member functions - Arrays within a</li> <li>class - Memory allocation for objects- Static data members &amp;</li> <li>Member functions - Arrays of Objects - Objects as function</li> <li>arguments - Friendly functions – Returning objects</li> </ul> | 13 |

## (2) (16 PPS 4E3)

| IV | <b>CONSTRUCTORS &amp; DESTRUCTORS</b><br>Constructors - Parameterized Constructors - Multiple Constructors<br>in a Class - Copy Constructor -Dynamic Constructor- Destructors<br><b>OPERATOR OVERLOADING</b><br>Defining Operator Overloading - Overloading Unary & Binary<br>Operators - Overloading Binary Operators using Friends - Rules<br>for Overloading Operators                                                                                         | 13 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| V  | <ul> <li>INHERITANCE: EXTENDING CLASSES</li> <li>Defining Derived classes - Single inheritance - Making a Private</li> <li>Member inheritable - Multilevel inheritance - Multiple inheritance</li> <li>- Hierarchical inheritance - Hybrid inheritance - Virtual base</li> <li>classes</li> <li>POINTERS &amp;VIRTUAL FUNCTIONS</li> <li>Pointers to Objects - this Pointer - Pointers to Derived Classes - Virtual functions - Pure virtual functions</li> </ul> | 13 |

Text Books

- Roger L.Tokheim, (1987). *Microprocessor Fundamentals*. 3<sup>rd</sup> Edition, Schaum's Outline Series, McGraw Hill Book Company, New Delhi, (Units I & II).
- Balagurusamy E. (2004). *Object Oriented.Programming With C++*. Tata Mc Graw Hill Publication, New Delhi, (Units III V).

- Ramesh S.Gaonkar, (1997). *Microprocessor Architecture Programming & Applications With The 8085*. 3<sup>rd</sup> Edition, Penram International Publishing, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). *Mastering C++*. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). *Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.

| Department               | Physics            |                 |
|--------------------------|--------------------|-----------------|
| Course                   | MSc Physics        | Effective from  |
|                          |                    | the year: 2016  |
| Subject Code: 16 PPS 417 |                    | Semester: III & |
| Title :                  | Core XVII: Project | IV              |
| Credit :                 | 8                  |                 |

| Department     | Physics                                           |                 |
|----------------|---------------------------------------------------|-----------------|
| Course         | MSc Physics                                       | Effective from  |
|                |                                                   | the year: 2016  |
| Subject Code : | 16PPS 414                                         | Semester: III & |
| Title :        | Core XIV: General Physics Lab II                  | IV              |
| Hrs/Week:      | 4                                                 | Credit: 5       |
| Objectives     | $\succ$ To become familiar with the techniques of |                 |
|                | advanced General Experiments.                     |                 |

| Cycle | Content                                                                                                                                                                                                                                                                                                                         | Hrs |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι     | <ol> <li>Copper Arc Spectra - CDS</li> <li>λ, dλ of a Monochromatic source and Thickness of a<br/>Mica sheet - Michelson's Interferometer</li> <li>Zeeman effect</li> <li>Magnetic Susceptibility - Quincke's Method</li> <li>Resistance of a Semiconductor - Four Probe Method</li> </ol>                                      | 24  |
| Π     | <ol> <li>Iron Arc Spectra – CDS</li> <li>Velocity of Sound in liquid- Ultrasonic Diffraction</li> <li>Magnetic Susceptibility- Guoy's Method</li> <li>Magnetoresistance</li> <li>BH Curve – Hysterisis - Standard Solenoid</li> </ol>                                                                                           | 24  |
| III   | <ol> <li>Brass Arc Spectra - CDS</li> <li>e/m - Millikan's oil drop method</li> <li>Polarimeter - Specific rotation of optically active substances</li> <li>Planck's constant - Photovoltaic cell and VI characteristics of solar cell</li> <li>Optical Fibre - Numerical aperture, Attenuation, Particle size and λ</li> </ol> | 24  |

- Worsnop, Flint, (1971). *Advanced Practical Physics*. Asia Publishing house.
  Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11<sup>th</sup> Edition Pragati Prakashan, Meerut.

| Department     | Physics                                             |                 |
|----------------|-----------------------------------------------------|-----------------|
| Course         | MSc Physics                                         | Effective from  |
|                |                                                     | the year: 2016  |
| Subject Code : | 16 PPS 415                                          | Semester: III & |
| Title :        | Core XV: Electronics Lab II                         | IV              |
| Hrs/Week:      | 4                                                   | Credit: 5       |
| Objectives     | $\succ$ To know the action and applications of      |                 |
|                | operational amplifier.                              |                 |
|                | $\succ$ To familiarize the method of interfacing of |                 |
|                | different programmable devices                      |                 |

| Cycle | Content                                                                                                                                                                                                                                                                                                                                                                                 | Hrs |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ι     | <ol> <li>Parameters of Operational amplifier</li> <li>Inverting, Non Inverting, Differential amplifier, Integrator<br/>and Differentiator- Op Amp</li> <li>Schmitt trigger, Scale changer, Phase changer - Op Amp</li> <li>Constant current source - Op Amp</li> <li>Microprocessor - Addition, Subtraction, Multiplication,<br/>Division &amp; Conversion of Number systems</li> </ol> | 24  |
| П     | <ol> <li>Simple and Regenerative Comparators – Op Amp</li> <li>Digital to Analog converter - Op Amp</li> <li>Adder, Subtractor, Current to Voltage converter and<br/>Voltage to Current converter-Op Amp</li> <li>Low pass, Band pass &amp; High pass filters - Op Amp</li> <li>Microprocessor - Interfacing I</li> </ol>                                                               | 24  |
| III   | <ol> <li>Window Detector - Op Amp</li> <li>Analog to Digital converter - Op Amp</li> <li>Solving first order simultaneous equations of two<br/>variables- Op Amp</li> <li>Function Generator - Op Amp</li> <li>Microprocessor - Interfacing II</li> </ol>                                                                                                                               | 24  |

- Paul B. Zbar, Joseph Sloop, (1983). Electricity & Electronics Fundamentals A Text-Lab Manual. McGraw Hill, New Delhi.
- Paul B.Zbar, Malvino, Miller, (1997). *Electronics: A Text- Lab Manual*. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2<sup>nd</sup> Edition, McGraw Hill, New Delhi.
- •
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India Ltd. Gayakwad, (1988). *Operational Amplifier And Linear Integrated Systems*. 2<sup>nd</sup> Edition, Prentice hall of India pvt Ltd, New Delhi. •
- 8085 µp Trainer kit Manual, Version 4.0 Microsystems Pvt Ltd. •

| Department     | Physics                                          |                |
|----------------|--------------------------------------------------|----------------|
| Course         | MSc Physics                                      | Effective from |
|                |                                                  | the year: 2016 |
| Subject Code : | 16 PPS 416                                       | Semester: IV   |
| Title :        | Core XVI: Computer Lab in C++                    | Semester. Iv   |
| Hrs/Week:      | 2                                                | Credit: 3      |
| Objectives     | ➢ To become familiar with the C++ programming    |                |
|                | language.                                        |                |
|                | ➤ To apply the C++ language to solve problems in |                |
|                | Physics.                                         |                |

| Content                                     | Hrs |
|---------------------------------------------|-----|
| 1. Class implementation.                    |     |
| 2. Arrays within a Class.                   |     |
| 3. Static data members and member function. |     |
| 4. Arrays of Objects                        |     |
| 5. Friend function.                         |     |
| 6. A function friendly to two classes.      |     |
| 7. Overloaded Constructors.                 |     |
| 8. Implementation of Destructors.           | 36  |
| 9. Overloading Unary operator.              |     |
| 10. Overloading Binary operator.            |     |
| 11. Single Inheritance.                     |     |
| 12. Hybrid inheritance.                     |     |
| 13. Virtual base class.                     |     |
| 14. Pointers to derived objects.            |     |
| 15. Virtual functions.                      |     |

- Balagurusamy E. (2004). *Object Oriented. Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). *Mastering C++*. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). *Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.