Programme Code:	MSC	Programme Title:	Master of Scie	ence
Course Code:	18PPS101	Title	Batch:	2018-2020
Course Code:	18885101	Core I: Mathematical Physics	Semester:	Ι
Hrs/Week:	5		Credits:	4

• To apply knowledge of mathematical methods in the concepts of Physics

Course outcomes

K1	CO1	To recollect the basic mathematical relations such as tensors, special functions, wave
		equations etc
K2	CO2	To apply the correct mathematical formulae to solve the expressions in physics
K3	CO3	To implement the functions and equations in the field of physics
K4	CO4	To evaluate the problems in classical quantum and Electromagnetic field theory

Syllabus

Unit	Content	Hrs
Ι	SPECIAL FUNCTIONS Legendre differential equations and Legendre functions - Generating function of Legendre polynomial - Orthogonal properties of Legendre's polynomials - Recurrence formulae for $P_n(x)$ - Bessel's differential equations: Bessel's functions of first kind - To solve $J_{1/2}(x)$, $J_{-1/2}(x)$, $J_{3/2}(x)$ and $J_{-3/2}(x)$ - Recurrence formulae for $J_n(x)$ - Generating function of $J_n(x)$ - Hermite differential equation & Hermite polynomials - Generating function of Hermite polynomials - <i>Recurrence formulae for Hermite polynomials</i>	13
п	COMPLEX VARIABLES Analytic function – The necessary and sufficient conditions for $f(z)$ to be analytic: Cauchy Riemann Differential equations in polar form – Cauchy's integral theorem(Cauchy proof only) - Cauchy's integral formula - Taylor's series and Laurent's series - Singularities of an analytic function - Residues and their evaluation - Cauchy Residue theorem –Problems - Evaluation of definite integrals of Trignometric functions of $\cos \theta$ and $\sin \theta$.	13
III	LAPLACE & WAVE EQUATIONS Solution of Laplace's equation in Cartesian coordinates - Examples of Two dimensional steady flow of heat - Solution of Laplace's equation in two dimensional cylindrical coordinates – Problems - Solution of Laplace's equation in Spherical polar coordinates – Problems – Diffusion equation or Fourier equation of heat flow - Solution of heat flow equation – Problems.	13
IV	FOURIER INTEGRAL AND TRANSFORMATIONS Fourier Integral – Problems – Fourier's Transform: Infinite Fourier sine and cosine transforms - Properties of Fourier's Transform: Addition theorem, Similarity theorem, Shifting property, Convolution theorem and Parseval's theorem – Problems – Finite Fourier sine and cosine transforms - Problems	13
V	TENSORS, BETA AND GAMMA FUNCTIONS Transformation of co-ordinates - Summation convention - Kronecker delta symbol - Generalised Kronecker delta - Scalars, contravariant and covariant vectors- Tensors of higher ranks - Algebraic operations of tensors – Quotient law - <i>Symmetric and skew symmetric tensors</i> - Beta and Gamma functions: Symmetry property of beta function – Evaluation of beta function – Transformation of beta function – Relation between beta and gamma function – Evaluation of Miscellaneous integrals	13
	Total contact hours	65

• Italic font denotes self study

Seminar, Assignment, Experience discussion, PPT

Text Books

• Sathyaprakash, (2013). *Mathematical Physics*. Sultan chand & sons, New Delhi, (Units I – V).

Reference Books

- Gupta B.D. (1989). Mathematical Physics. Vikas publication house, Noida, U.P.
- Louis A.Pipes, Lawrence R. Harvill, (1970). *Applied Mathematics For Engineers & Physicsts*. McGraw Hill Kogakusha Ltd, New Delhi.
- Chattopadhyay P.K. (1990). Mathematical Physics. Wiley Eastern Limited, New Delhi.
- Bose R.K. Joshi M.C. (1984). Methods Of Mathematical Physics. Tata McGraw-Hill, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

Verified by HOD	Checked by CDC	Approved by COE
me: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
gnature:	Signature:	Signature:
	ne: Dr.K.Kandaswamy	ne: Dr.K.Kandaswamy Name: Dr.M.Durairaju

Programme Code:	MSC	Programme Title:	Master of Sci	ience
Course Code:	18PPS102	Title	Batch:	2018- 2020
		Core II: Classical and Non linear Dynamics	Semester:	Ι
Hrs/Week:	5		Credits:	4

• To gain knowledge and understanding of Lagrangian and Hamiltonian formulations of mechanics and to apply them to simple systems.

Course outcomes

K1	CO1	To understand the relation between symmetry operation and classical conservation laws
K2	CO2	To tackle the new problem and application techniques of classical mechanics to far-flung
		reaches of science
K3	CO3	To get clear understanding of recent intricate theories of modern physics
K4	CO4	To provide smooth transition from traditional techniques to rapidly growing area of non-linear
		dynamics and chaos

Syllabus

Unit	Content	Hrs
I	LAGRANGIAN FORMALISM Constraints and Degrees of freedom - Generalized coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, Force & Potential - Variational techniques and Euler's Lagrange differential equation - Hamilton's Variational principle - Lagrange's equation of motion from Hamilton's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation of motion: Linear harmonic oscillator - <i>Simple pendulum</i> - Isotropic oscillator - Particle moving under central force - Conservation theorems: Cyclic coordinates - Conservation of Linear momentum - Conservation of energy	13
п	HAMILTONIAN FORMALISM Phase space - Hamiltonian - Hamilton's canonical equation of motion - Significance of H - Deduction of canonical equation from Variational principle -Applications of Hamilton's equation of motion: <i>Simple pendulum</i> - Particle in a central field of force - Hamiltonian of a Charged particle in an electromagnetic field - Principle of least action and proof - Canonical transformations - Generating function and different forms - Poisson brackets: Definition - Equation of motion in Poisson bracket form - Angular momentum and Poisson bracket relations	13
ш	HAMILTON JACOBI THEORY Hamilton Jacobi method: H J partial differential equation - Solution of H J equation - Discussion on Hamilton's principle function - Solution of harmonic oscillator problem by H J method - Particle falling freely - H J equation for Hamilton's characteristic function - Kepler's problem solution by H J method - Action and Angle variables - Solution of harmonic oscillator problem by action angle variable method	13
IV	RIGID BODY DYNAMICS & SMALL OSCILLATIONS Euler's theorem - Euler's angles - Rotational kinetic energy of a rigid body - Equations of motion for a rigid body - The motion of symmetric top under the action of gravity - Types of equilibria : Stable & Unstable equilibrium - Formulation of the problem : Lagrange's equations for small oscillations - Properties of T,V and ω - Normal coordinates & normal frequencies of vibration - Systems with few degrees of freedom : Free vibrations of linear triatomic molecule	13

v	NONLINEAR DYNAMICSDynamical systems: Linear & Nonlinear forces - Mathematical Implications ofnonlinearity: Linear & Nonlinear systems, Linear superposition principle -Working definition of nonlinearity - Effects of Nonlinearity - LinearOscillators: Linear Oscillators and Predictability: Free Oscillations, DampedOscillations, Damped & Forced Oscillations – Nonlinear Oscillators : Dampedand Driven nonlinear oscillators : Free Oscillations, Damped Oscillations, Primary Resonance & Jump Phenomenon, Secondary Resonances - NonlinearOscillations and Bifurcations	13
	Total contact hours	65

Additional activities

Seminar, Assignment, Experience discussion, PPT	
	Seminar, Assignment, Exi
Seminar, Assignment, Experience discussion, 111	Semmar, Assignment, LA

Text Books

- Gupta S.L. Kumar V. Sharma R.C. (2010). *Classical Mechanics*. Pragati Prakashan, Meeret, (Units I IV).
- Laxmanan M. Rajasekar S. (1978). *Nonlinear Dynamics*. Springer Verlag, Distributors: Prism Books Pvt Ltd, Berlin, (Unit V).

Reference Books

- Rana N.C. Joag P.S. (2001). *Classical Mechanics*. Tata McGraw Hill, New Delhi.
- Herbert Goldstein, (2001). *Classical Mechanics*. Addison Wesley Publishing Company.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title: Master of Sci		ence
Course Code:	18PPS103	Title	Batch:	2018- 2020
		Core III: Statistical Mechanics	Semester:	Ι
Hrs/Week:	5		Credits:	4

• To understand the concepts of Statistical Mechanics and to apply these concepts to various physical phenomena.

Course outcomes

K1	CO1	To understand the concept of statistical mechanics
K2	CO2	To study the physical properties of a mechanical system in a situation when description is
		incomplete.
K3	CO3	To understand the average value of thermodynamic system and get clarity on equilibrium and
		non-equilibrium system
K4	CO4	To explain the microscopic properties of a system on the basis of the dynamical behavior of its
		constituent particle and realization of atomic theory of matter

Syllabus

Unit	Content	Hrs
	CONCEPTS OF STATISTICAL MECHANICS Phase space – Volume in Phase space – Ensembles – Micro, Canonical ensemble – Canonical ensemble – Grand canonical – ensemble – Uses of	
Ι	ensemble – Liouvilles theorem - Postulate of equal a priori probability – Statistical equilibrium – Thermal equilibrium - Mechanical equilibrium – Particle equilibrium – Thermo dynamical quantities : entropy – enthalpy – Helmholtz free energy – Gibb's free energy - Chemical potential - Connection	13
	between statistical and thermo dynamical quantities CLASSICAL STATISTICS	
П	Microstates and Macro states – Classical Maxwell Boltzmann distribution law – Most probable speed, Mean speed, Mean square speed, Root mean square speed - Principle of equipartition energy – Gibbs paradox – Partition function and its correlation with thermodynamic quantities. Partition function and their properties, effect of shifting zero level of energy on partition function, mean energy, specific heat, entropy <i>-comparison of ensemble</i> – Equipartition theorem - Partition function for real gas.	13
	QUANTUM STATISTICS Transition from classical statistical Mechanics to Quantum Statistical	
III	Mechanics – Indistinguishability in quantum statistics – Statistical weight or a priori probability – Matrices – The density matrix – Postulates – Condition for statistical equilibrium – Identical particles and symmetry requirement – Bose - Einstein distribution law – Fermi – Dirac distribution law - Evaluation of Constant $\alpha \& \beta$ - <i>Results of all three statistics</i> .	13
	APPLICATION OF QUANTUM STATISTICS	
IV	Photon gas - Black body radiation and Planck radiation – Specific heat of solids – Einstein theory – Debye theory – Bose Einstein condensation – Liquid Helium - Electron Gas – Free electron model and electronic emission – Pauli's theory of Para magnetism – White dwarfs.	13
	TRANSPORT PROPERTIES	
V	Boltzmann transport equation – Thermal conductivity – Viscosity – Brownian movement – Onsager solutions – Fluctuation : Energy, Pressure – Ising model – Bragg William approximation – One dimensional Ising model.	13
	Total contact hours	65

• Italic font denotes self study

Seminar, Assignment, Experience discussion, PPT

Text Book

• Gupta, Kumar, (2003). *Statistical Mechanics*. Twentieth edition, Pragati Prakasahan Meerut, Begam Bridge Meerut, (Units I - V).

Reference Books

- Keiser Huang, Fundamentals of Statistical Mechanics. Revised edition.
- Agarwal K. Eisner, (1998). Statistical Mechanics. Second edition, New Age International Publishers, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S
CO4	S	S	S	М	Н

Mapping

S-Strong; H-High; M-Medium; L-Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms.K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Science	
Course Code:	18PPS1E1	Title	Batch:	2018- 2020
		Major Elective I: Applied Electronics	Semester:	Ι
Hrs/Week:	5		Credits:	5

• To understand the action of semiconductor devices, amplifiers and oscillators

Course outcomes

K1	CO1	To acquire the basic knowledge in semiconductor devices
K2	CO2	Understand the different types of amplifiers
K3	CO3	Able to design Op-amp Circuits for various practical applications
K4	CO4	Design oscillators and multi-vibrators with the acquired knowledge on electronics

Syllabus

Unit	Content	Hrs
Ι	SEMICONDUCTOR DEVICES AND AMPLIFIERS Semiconductor: Basic ideas- CE transistor characteristics - JFET, Depletion MOSFET and Enhancement MOSFET - Characteristics - UJT and Relaxation Oscillator - SCR & SCR as a switch - Principle of amplification - Classification of amplifiers - Common base, Common emitter RC coupled amplifiers and Frequency response - Hybrid parameters and Small signal analysis - Emitter follower - <i>Concept of Power amplification & Classification of Power</i> <i>amplifiers</i> - Transformer coupled class A Power amplifier –Calculation of Efficiency - Class B Push pull amplifier - Complementary symmetry Push pull amplifier – Efficiency calculation - Biasing of FET amplifier - Common source FET amplifier - Common drain FET amplifier.	13
п	FEEDBACK AMPLIFIER & OSCILLATORS Concept of Feedback - Negative feedback - Forms of negative feedback - <i>Effect</i> of negative feedback on bandwidth, distortion, noise and stability - Positive feedback - Barkhausen criterion - Generation of sinusoidal waves by a tuned LC circuit - Classification of oscillators - Hartley oscillator - Colpitts oscillator - Phase shift oscillator– Frequency calculation - Astable, Monostable and Bistable Multivibrators .	13
III	OPERATIONAL AMPLIFIER-I Typical stages of an Op Amp -Ideal Op Amp - Inverting Op Amp - Non inverting Op Amp - Differential Op Amp - Summing Op Amp circuits- Voltage follower circuits Voltage to current converter - Sample and hold circuit Logarithmic amplifier-Constant current source using Op Amp-Integrator using Op Amp.	13
IV	OPERATIONAL AMPLIFIER-II Differential amplifier – Common mode and Differential mode – Common Mode Rejection Ratio(CMRR)- Differential Amplifier circuits – Common Mode operation – Differential Mode operation – Realization of constant – current source – Comparators – window detector circuits – Schmitt Trigger – Practical Operational amplifier.	13
v	RADIOMETRY AND PHOTOMETRY Radiometric and photometric flux,Efficacy ,Radiometric and photometric Energy,Radiometric and photometric intensity(Definition only) – Common Radiant Profiles – Optical transfer function and Numerical aperture	13

DISPLAY DEVICES & DETECTORS
Light Emitting Diode: Construction - Electrical and Optical Characteristics -
Electroluminescent Source: Electroluminescent lighting panel and Display -
Classifications and Characteristics of radiation detectors - Detector Noise -
Thermal Detectors: Thermocouple- Pyroelectric detectors - External Photo
effect Photoelectric Detectors: Photomultiplier, Internal Photo effect
Photoelectric Detectors: Photoconductors

• ItItalic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Norman Lurch, (1981). Fundamentals Of Electronics. John Wiley & Sons, New York, (Units I II).
- Swaminathan Mathu, (1985). *Electronics Circuits And Systems*. 1st Edition, Howard W.Sams & Co, (Units III &IV).
- Endel Uiga, (1995). *Optoelectronics*. Prentice Hall International Editions, New York, (Units V).

Reference Books.

- Salivahanan S. Suresh kumar N. Vallavaraj A. (2003). *Electronic Devices & Circuits*. 10th Reprint, Tata McGraw Hill Publishing Company Limited, New Delhi.
- Robert F.Coughilin, (2001). *Operational Amplifiers & Linear Integrated Circuits*. 6th Edition, Pearson Education Inc, New Delhi.
- Chin Lin Chen, (1996). *Elements Of Optoelectronics And Fiber Optics*. A Time Mirror higher education Group, inc.company, 1996.
- Wilson J. Hawkes J.F.B. (1992). *Optoelectronics An Introduction*. 2nd Edition Prentice Hall, New Delhi, (Unit V).

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	М	М	М
CO2	S	S	М	М	М
CO3	L	М	S	S	М
CO4	М	М	S	S	М

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Dr. V.Satyabama	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title: Master of S		ence
Course Code:	18PPS204	Title	Batch:	2018- 20
		Core II : Quantum Mechanics-I	Semester:	II
Hrs/Week:	5		Credits:	4

• To understand the basic concepts and formalisms in Quantum mechanics **Course outcomes**

K1	CO1	Gain good understanding of the principles of quantum mechanics
K2	CO2	Relate abstract formalism to matrix and wave mechanics
K3	CO3	Develop deep knowledge on the role of angular momentum and scattering phenomena in
		modern physics and technology
K4	CO4	Apply the most appropriate approximation method for solving specific problems

Syllabus

Unit	Content	Hrs
	MATRIX FORMULATION OF QUANTUM THEORY	
	Matrix algebra – Linear vector space – Hilbert space – orthonormality property	
	of basis vectors – Schwartz inequality – Linear operator – Eigen functions and	
Ι	Eigen values – Hermitian operator – Schmidt orthogonalisation procedure –	13
1	Postulates of Quantum mechanics - Matrix representation of an operator -	15
	Column representation of the wave function – Normalisation and orthogonality	
	of wavefunctin in matrix form – Product of two linear transformations - Dual	
	space – Change of basis, similarity and unitary transformations.	
	STATIONARY STATES	
	Schrödinger's equation in Cartesian and Spherical coordinates - Three	
II	dimensional harmonic oscillator – The rigid rotator with free axis – Eigen	13
	function for the rotator – Rigid rotator in a fixed plane - Motion of a particle in	
	a three dimensional square well Potential – The hydrogen atom: Equations and	
	Solutions of φ , θ and R -Heisenberg, Schrödinger and Interaction pictures.	
	TIME INDEPENDENT PERTURBATION THEORY	
III	Perturbation theory for a system with Non-degenerate and Degenerate levels -	10
	Stark effects in Hydrogen and two electron atoms - The variation method and	13
	its application to Hydrogen molecule - WKB approximation and its validity –	
	Application to barrier penetration. ANGULAR MOMENTUM AND IDENTICAL PARTICLES	
	Algebra of the angular momentum vector components - Ladder operators -	
IV	Eigen value spectrum and Matrix representation - Angular momentum operator - Addition of two angular momenta and CG coefficients - Application to two	13
	electron systems - Parity operator, Symmetric and Antisymmetric wave	
	functions for a system of \mathbf{n} identical particles.	
	SCATTERING THEORY	
	Scattering amplitude and scattering cross section - Integral equation in terms of	
V	Green's function - Born approximation and its validity - Application to	13
·	screened coulomb potential - Partial wave analysis - Optical theorem -	10
	Application to low energy two nucleon scattering	
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Aruldhas, (2002). Quantum Mechanics. Prentice Hall India Company Pvt Ltd, New Delhi, (Units I, III , IV &V).
- Satya Prakash, (2007). *Advanced Quantum Mechanics*. Kedar nath Ram Nath, Fifth revised edition, Meerut, (Unit -II).

Reference Books

- Mathews, Venkatesan, (2002). A Text Book of Quantum Mechanics. Tata McGraw Hill Company Ltd, New Delhi.
- Atkins P.W. (1984). Quantum Mechanics. Oxford University Press, Oxford.
- Gupta, Kumar, Sharma, Quantum Mechanics. Pragathi Prakash Publications, Meerut.
- Gupta S.L. Gupta I.D. (1982). Advanced Quantum Theory and Fields. S Chand and Company Ltd, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	Н	М	S
CO2	М	Н	М	S	L
CO3	S	Н	М	S	М
CO4	М	М	Н	М	М

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.T.E.Manjulavalli	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Sci	ience
Course Code:	18PPS205	Title	Batch:	2018- 2020
Course Code:	18885205	Core V: Electromagnetic Theory & Plasma Physics	Semester:	Π
Hrs/Week:	5		Credits:	4

• To develop the basic knowledge about electromagnetic field and plasma physics

Course outcomes

K1	CO1	To recollect the basic ideas about electric, magnetic fields and fourth state of matter
K2	CO2	To understand the applications of electromagnetic field and plasma physics
K3	CO3	To analyze incompletion of Ampere's law and completion of Maxwell's equation
K4	CO4	Enhanced skill in solving problems by applying electromagnetic field expressions

Syllabus

Unit	Content	Hrs
Ι	ELECTROSTATICS AND MAGNETOSTATICS Concept of charge - Coulomb's law - Gauss law - Multipole expansion of charge distribution - Dielectric and its polarization - Electric displacement D - Polarization of non-polar molecules – Lorentz equation for molecular field - Claussius Mossotti relation - Polarisation of polar molecules- Langevin equation-Debye relation and molecular structure - Current density - Ampere's law of force - Biot Savart law - Ampere's circuital law - Magnetic scalar and vector potential - Application to magnetic dipole	13
п	FIELD EQUATION AND CONSERVATION LAWS Equation of continuity - Displacement current D - Maxwell's equations - Energy in electromagnetic field - Poynting vector - Momentum in electromagnetic fields - Electromagnetic potential A and ϕ - Maxwell's equations in terms of electromagnetic potential - Concept of Gauge - Lorentz Gauge - Coulomb Gauge - Retarded potential - Lienard Wiechart potentials	13
III	PROPAGATIONANDINTERACTIONOFPLANEELECTROMAGNETIC WAVESEM waves in free space –Propagation of E.M waves in Isotropic dielectrics- Anisotropic dielectrics in conducting media and in ionized media - Boundary conditions - Reflection and Refraction of EM waves - Fresnel's formula - Brewster's law and polarization of E.M.W - Total internal reflection - Reflection from a metallic surface - Propagation of EM waves between conducting planes	13
IV	RELATIVISTIC ELECTRODYNAMICS Four vectors and tensors - Transformation equations for ρ and J - Transformation equation for A and φ - Electromagnetic field tensor - Transformation equation for E and B - Covariance of Maxwell's equations : Four vector form & four tensor form - <i>Covariance and transformation</i> <i>law of Lorentz force</i>	13

V	FUNDAMENTALS OF PLASMA Occurrence of Plasma in nature - Definition of Plasma - Concept of Temperature - Debye shielding - Plasma parameter - Criteria for Plasma - Relation of Plasma physics to ordinary EM waves - Plasma Oscillations - Fluid equation of motion – Convective derivative – The stress tensor – Collisions – Equation of continuity – Equation of state – Complete set of fluid equations – Fluid drifts perpendicular to B - Fluid drifts parallel to B – Plasma approximation – <i>Applications of Plasma Physics(Simple ideas)</i> .	13	
Total contact hours			

Italic font denotes self study ٠

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Chopra K.K. Agarwal G. C. (1989). *Electromagnetic Theory*. 5th edition K. Nath & Co, Meerut, (Units I IV). •
- Chen F.F. Introduction To Plasma Physics And Controlled Fusion. 3rd edition, Plenium press, Newyork, (Unit • V).

Reference Books

- David. J. Griffiths, *Introduction To Electrodynamics*. 2nd edition, Prentice Hall of India Private Ltd, New Delhi. Gupta Kumar Singh, (1998). *Electrodynamics*. 13th edition, Pragati Prakasam, Meerut. •
- •
- Sen S. N. (1999). *Plasma Physics*. 3rd edition, Pragati Prakasam, Meerut.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	М	S
CO2	S	S	S	М	Н
CO3	М	Н	Н	М	S
CO4	М	М	S	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme code:	MSC	Programme Title :	Master of Science	ce
		Title	Batch :	2018- 2020
Course Code:	18PPS206	Core VI: Lasers & Non-Linear Optics	Semester	II
Hrs/Week:	5		Credits:	4

• To develop the skill to gain knowledge in Lasers and Non-linear optics

Course Outcomes (CO)

K1	CO1	To keep in mind the basic principle and characteristics of Lasers
K2	CO2	To get the idea about the action of various types of Lasers, performance improvement and their
		applications
K3	CO3	To implement Laser in Non-linear optics
K4	CO4	To review the ideas and concepts of Laser Spectroscopy

Syllabus

Unit	Content	Hrs			
	BASIC PRINCIPLES OF LASERS				
	Energy levels - Thermal equilibrium - Relationship between Einstein's				
	coefficients - Condition for large Stimulated emissions - Condition for light	13			
Ι	amplification - Line shape function - Population inversion - Pumping methods -				
	Threshold condition - Critical population inversion - Line broadening - Cavity				
	configurations - Modes - Laser rate equations for two, three & four level				
	systems				
	LASER CHARACTERISTICS				
	Spatial & Temporal coherence - Directionality - Monochromaticity - Intensity				
II	TYPES OF LASERS	13			
	Ruby laser - Nd YAG laser - Helium Neon laser - Carbondioxide laser -	-			
	Semiconductor diode laser - Excimer laser - Dye laser - Chemical laser - X ray				
	laser - Free electron laser - Fiber laser - Color center laser				
	PERFORMANCE IMPROVEMENT OF LASER				
III	Q switching - Methods of Q switching - Peak power - Laser amplifiers - Mode				
	locking - Distributed feedback laser	13			
	APPLICATIONS OF LASER Metarial working – Jactone concretion – Halagraphy – Macaurament of distance				
	Material working - Isotope separation - Holography - Measurement of distance - Laser in medicine				
	NON-LINEAR OPTICS				
	Harmonic generation - Second harmonic generation - Phase matching Third				
	harmonic generation - Optical mixing - Parametric generation of light - Self				
	focusing of light				
IV	MULTIPHOTON PROCESSES	13			
	Multiquantum Photoelectriceffect - Twophoton processes (Experiments) -				
	Three photon processes - Second harmonic generation - Parametric generation -				
	Parametric light Oscillator - Frequency up conversion - Phase conjugate optics				
	LASER SPECTROSCOPY				
	Rayleigh and Raman scattering - Stimulated Raman effect - Hyper Raman				
	effect (Classical treatment) - Coherent Anti Stokes Raman Scattering - Spin flip				
V	Raman Laser - Photo acoustic Raman Spectroscopy - Saturation absorption	13			
	Spectroscopy - Doppler free two photon Spectroscopy - Multi photon ionization				
	- Single atom detection with lasers - Laser cooling and Trapping of neutral				
	atoms				
	Total contact hours	65			

• Italic font denotes self study

Additional activities

Text Books

- Avadhanulu M.N. (2001). *Lasers Theory And Applications*. S.Chand and Company Ltd, New Delhi, (Units I III).
- Laud B.B. (2001). Lasers And Nonlinear Optics. 2nd Edition, New age international private Ltd, New Delhi, (Units IV V).

Reference Books

- William T. Silfvast, (1998). *Laser Fundamentals*. (Cambridge University Press), First South Asian paperback Edition.
- Ghatak, Thyagarajan, Lasers Theory And Applications. Macmillan India Ltd.
- Ralf Menzel, (2001). *Photonics*. Springer International Edition.
- Abbi S.C. Ahmad S.A. (2001). Non Linear Optics And Laser Spectroscopy. Narosa publishing house, Narosa.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	S	Н
CO2	Н	Н	S	Н	Н
CO3	S	Н	Н	S	S
CO4	Н	S	Н	S	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	Programme Code: MSC Programme Title:			ce
Course Code:	18PPS207	Title	Batch:	2018- 2020
Course Code:	18885207	Core VII: Electronic Communications and Cyber security	Semester:	Π
Hrs/Week:	5		Credits:	4

• To develop the scientific skills in the Electronic Communication systems and Cyber security

Course outcomes

K1	CO1	To understand the various modulation techniques and the generation of microwaves
K2	CO2	To apply the basic physical concepts on satellite communication
K3	CO3	To implement the modulation techniques in the RADAR communication systems
K4	CO4	To know about the concepts of internet cyber security

Syllabus

Unit	Content	Hrs		
I	ANALOG COMMUNICATION Power and energy in a signal-model of communication system- modulation and frequency translation - Amplitude Modulation: DSB-SC, SSB, VSB and conventional AM - Superhetrodyne AM receiver - Frequency Modulation: Modulation index, spectrum and bandwidth, direct generation and demodulation, superhetrodyne FM receiver - Noise: noise power spectral density, white, thermal and shot noise, equivalent noise temperature - Signal to noise ratio and noise figure	13		
П	PULSE MODULATION AND DIGITAL COMMUNICATION Pulse Modulation: Sampling theorem, informal justification, pulse amplitude modulation, time division multiplexing and pulse time modulation - Pulse code Modulation: Quantization Error, bandwidth, companding and delta modulation - Data Transmission: Base band and radio frequency transmission, FSK and PSK - Information Theory: Rate and measurement, channel capacity, Noisy and noiseless channel - <i>Shannon's theorem</i>	13		
III	MICROWAVE SYSTEMS Microwaves - Multicavity klystron - Reflex klystron - Magnetron - Travelling wave tube SATELLITE SYSTEMS Kepler's law - Orbits - Geostationary orbits - Power systems - Altitude control- Satellite station keeping - Antenna look angles - Limits of visibility- Frequency plans and polarization - Transponder	13		
IV	CYBER SECURITY AND CRYPTOGRAPHY Overview of Cyber Security: Confidentiality, Integrity and Availability. Threats: Malicious Software (Viruses, Trojans, Root kits, Worms, Botnets), Memory exploits (Buffer Overflow, Heap Overflow, Integer Overflow, Format String). Cryptography – Authentication, Password System – Windows Security.	13		
V	NETWORK SECURITY Network Security – Network Intrusion, Deduction and Prevention Systems, Firewalls. Software Security: Vulnerability Auditing, Penetration Testing, Sandboxing, Control Flow Integrity. Web Security: User Authentication. Legal and Ethical Issues: Cybercrime, Intellectual Property Rights, Copyright, Patent, Trade Secret, Hacking and Intrusion, Privacy, Identity Theft.	13		
Total contact hours				

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Swaminathan Madhu, (1985). Electronic Circuits And Systems. 1st Edition, H.W.Sams, (Units I & II).
- Kennedy, Davis, (2002). *Electronic Communication Systems*. 16th Edition, Tata McGraw-Hill, New Delhi, (Units III Microwave system).
- Dennis Roddy, John Coolen, (2000). *Electronic Communications*. 18th Edition, Prentice-Hall of India, New Delhi, (Unit III- Satellite Communication).
- Chwan-Hwa (John) Wu, J. David Irwin (2016), Computer Networks & Cyber Security, CRC Press

Reference Books

- Louis E.Frenzel, (2001). *Communication Electronics*. 3rd Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi.
- Wayne Tomasi, (1998). *Electronic Communication Systems*. 3rd Edition, Pearson Education Asia, New Delhi.
- Robert J. Schoenbeck, (1992). *Electronic Communication Systems*. 3rd Edition Universal Book Stall.
- Wayne Tomasi, Vincent F.Alisouskas, (1988). Telecommunications. Printice- Hall International, New Delhi.
- Preston Gralla, (1996). *How The Internet Works*. 1st Edition, Ziff- Davis press.

Note:

For Cyber Security, the Study Material will be available in our College Journal Website: www.ngmc.org

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	Н	М	Н
CO2	S	М	S	Н	М
CO3	М	Н	S	М	S
CO4	М	S	М	М	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: A.G.Kannan	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Sc	eience
Course Code:	18PPS208	Title	Batch:	2018-2020
Course Code:	18885208	Core VIII: General Physics Lab I	Semester:	I & II
Hrs/Week:	4		Credits:	4

• To understand the techniques of advanced physics experiments

Course outcomes

K3	CO1	To familiarize with the experimental techniques
K4	CO2	To get the idea about the experimental setup and arrangement of device
K5	CO3	To verify the experimental results with theoretical values

List of experiments:

- 1. Young's modulus Elliptical fringes Cornu's method
- 2. Viscosity of a liquid Mayor's oscillating disc
- 3. Thermal conductivity Forbe's method
- 4. Temperature coefficient and band gap energy of a Thermistor
- 5. Measurement of Spot size, Divergence & Wavelength of a Laser beam
- 6. Young's modulus Hyperbolic fringes Cornu's method
- 7. Specific heat of a liquid Ferguson's method
- 8. λ , d λ & Thickness of FP etalon Fabryperot Interferometer
- 9. Rydberg's constant Hydrogen spectrum
- 10. Refractive index of a liquid & Absorption coefficient of transparent Material -Laser Source
- 11. Rydberg's constant Solar spectrum
- 12. Hall effect in Semiconductors
- 13. Study of Birefringence Channel spectrum method or Diffraction Hartmann's Interpolation
- 14. Stefan's constant
- 15. Biprism Determination of λ of monochromatic source & thickness of a transparent sheet

Reference Books

- Worsnop, Flint, (1971). Advanced Practical Physics. Asia Publishing house.
- Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11th Edition Pragati Prakashan, Meerut.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	М
CO3	М	Н	Н	М	S

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	MSC	Programme Title:	Master of Science	
Course Coder	18PPS209	Title	Batch:	2018-2020
Course Code:		Core IX: Electronics Lab I	Semester:	I & II
Hrs/Week:	4		Credits:	4

• To understand the working of semiconductor devices, amplifiers and oscillators.

Course outcomes

K3	CO1	Remember the applications of semiconductor devices
K4	CO2	To get the idea and principles of electronics practically
K5	CO3	To access the action of electronic devices such as diode, transistor, UJT and FET etc.

List of experiments:

- 1. CRO Familiarization: Lissajous figures, Measurement of Voltage, Phase and Frequency
- 2. I.C Regulated power supply
- 3. RC coupled amplifier Double stage
- 4. Feedback amplifier
- 5. FET amplifier Common Source
- 6. Emitter follower
- 7. UJT Characteristics
- 8. FET amplifier Common Drain
- 9. Phase shift Oscillator using opamp
- 10. Power amplifier Push Pull
- 11. SCR characteristics
- 12. Astable Multivibrator using 555 timer IC and Op amp
- 13. Power amplifier Complementary symmetry
- 14. UJT Relaxation Oscillator
- 15. Wave shaping circuits Differentiator, Integrator, Clipper and Clamper

Reference Books

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill, New Delhi.
- Paul B.Zbar, Malvino, Miller, (1997). Electronics: A Text- Lab Manual. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill, New Delhi.
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India Ltd, New Delhi.
- Bhargowa N.N. (1984). Basic Electronics And Linear Circuits. McGraw Hill, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	М	Н
CO2	S	М	S	Н	М
CO3	Н	S	Н	S	S

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.V.Sathyabama	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Science	
Commo Codor	18PPS2N1	Title	Batch:	2018- 2020
Course Code:	18PP52N1	Non Major Elective : Non Conventional Energy Sources	Semester:	II
Hrs/Week:	1		Credits:	2

• To study the basic concepts and applications of non conventional energy sources

K1	CO1	To recollect the applications of physics in real world
K2	CO2	To understand the principles of physics involving various natural and artificial process
K3	CO3	To implement the basics laws of physics in the field of non conventional energy sources
K4	CO4	To analyze the efficiency of devices and instruments used in the production of energy

Syllabus

Unit	Content	Hrs
Ι	SOLAR ENERGY Solar radiation at the earth surface – Physical principles of the conversion of solar radiation into heat – Solar water heating – Solar cooking.	3
II	WIND ENERGY Nature of the wind – Power in the wind – Site selection consideration – Types of wind mechanics: Horizontal – Axial machines – Vertical axis mechanics – Advantages and disadvantages of WESS.	2
III	OCEAN ENERGY Tidal energy – Ocean thermal energy conversion (OTEC) – Methods of ocean thermal electric power generation – Closed cycle OTEC system – Open cycle OTEC system.	2
IV	ENERGY FROM BIOMASS Biomass – Biofuels – Biomass Conversion Technologies: Wet processes – Dry processes – Thermal gasification of Biomass – Classification of Biomass gasifiers.	3
V	GEOTHERMAL ENERGY A typical geothermal field – Estimates of Geothermal power – Nature of Geothermal fields – Geothermal sources – Advantages and disadvantages of Geothermal energy – <i>Applications of Geothermal Energy</i> .	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	S	М
CO2	S	Н	М	М	М
CO3	S	S	М	S	S
CO4	Н	М	М	Н	S

Mapping

S – Strong; H – High; M – Medium; L – Low

Text Books

• G.D.Rai, (2002). Non-Conventional Energy Sources. Khanna Publishers, Delhi, (Units I-V).

Reference Books

- G.D.Rai, (1980). *Solar Energy Utilization*. Khanna Publishers, Delhi, 1st edition.
- S.P. Sukhatme, (2000). *Solar Energy Principles of Thermal Collection and Storage*. Tata McGraw Hill, New Delhi, 2st edition.

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Scie	ence
Course Codor	18PPS2N2	Title	Batch:	2018- 2020
Course Code:		Non Major Elective: Communication Systems	Semester:	Π
Hrs/Week:	1		Credits:	2

• To apply knowledge of physics in the field of communication systems

Course outcomes

K1	CO1	To recollect the basics of analog and digital circuit system
K2	CO2	To understand the conversion of analog to digital signals and modern methods for the
		transmission of signals
K3	CO3	To implement the digital transmission by using recent electronic devices
K4	CO4	To analyze the difference in communicating the signals through various methods

Syllabus

Unit	Content	Hrs
Ι	DIGITAL AND DATA COMMUNICATION Elements of Digital and Data Communication - Digital information in communication - Basic block diagram of data communication system – Coding - <i>ASCII coding</i> .	3
Π	DATA TRANSMISSION CIRCUITSData communication system – data communication Topology – Transmissiontypes – Transmission modes – Characteristics of data transmission circuits.	2
III	MODEM Need and Function of modem – Modem for non telephone links - Modem for interconnection – Modem transmission speed – Modem modulation method.	2
IV	NETWORK Network application – Network organization – Gateways routers and bridges – LAN, MAN, WAN.	3
v	TELEMETRY AND ELECTRONIC EXCHANGE, FACSIMILE Basic telemetry system – Classification phone system – Local loop on hook and off hook – Trunk - Super trunk - Hierarchy of a telephone network - Pulse delay – Phone dialing – Phone dialing - Ring back – Operation the central office and loop supervision- pulse dialing and mechanical switching – Facsimile – <i>Basic facsimile operation</i> .	3
	Total contact hours	13

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

• Gautam. A.K, (2004). *Communication systems II*. 2nd Revised edition, S.K. Kataria and Sons, Delhi.(I-V)

Reference Books

• Kennedy, Davis, (2002). *Electronic Communication Systems*. 16th Edition, Tata McGraw-Hill, New Delhi.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	S	S	М
CO2	Н	S	М	М	Н
CO3	S	S	М	S	S
CO4	Н	М	S	Н	S

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Mr.P.Sivaraj	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Science	
Course Code:	18PPS310	Title	Batch:	2018-2020
Course Code:		Core X: Quantum Mechanics-II	Semester:	III
Hrs/Week:	5		Credits:	4

• To familiarize with advanced concepts and methodology of quantum mechanics, quantization of fields and central force problems

Course outcomes

K 1	CO1	Acquire thorough knowledge and understanding on the basic principles of quantum
		mechanics and their applications to various physical and chemical problems
K2	CO2	Understand the effects of special relativity in quantum mechanics and to gain an insight in the
		quantum field theory
K3	CO3	Apply the concepts of quantum mechanics to quantitatively predict the behavior of physical
		systems
K4	CO4	Analyse and apply the modern quantum mechanical methods for determining electronic
		structure of molecules and atoms

Syllabus

Unit	Content	Hrs
	TIME DEPENDENT PERTURBATION Schrodinger equation and general solution - Propagator- Alteration of	
Ι	Hamiltonian, transitions and sudden approximation - Perturbation solution for transition amplitude - First order perturbation - Second order perturbation -	13
	Harmonic perturbation – Transition to continuum states : Fermi Golden rule - Scattering of a particle by a potential – <i>Absorption and Emission of Radiation</i>	
	RELATIVISTIC QUANTUM MECHANICS	
	Klein Gordon equation - Plane wave solutions - Position probability density and	
II	current density - Applications to the study of energy levels of electron in a	13
	coulomb field - Dirac equation - Probability and Current densities - Alpha, Beta	
	matrices and their properties - Plane wave solutions for Dirac equation - Negative energy	
	RELATIVISTIC QUANTUM MECHANICS	
	Electromagnetic potentials: Magnetic moment of the electron – Existence of	
III	electron spin - Spin-orbit energy - Zitterbewegung - Dirac's equation of a	13
	central field force (H-Atom) - Solution of Dirac's equation of a central field	15
	force (H-Atom) –Hydrogen spectrum according to Dirac equation – Covariant	
	formulation of Dirac equation - Properties of Gamma matrices	
	QUANTIZATION OF FIELDS Field - Quantization procedure for particles - Classical formulation of	
IV	Lagrangian and Hamiltonian equations of motions - Quantum equation of the	13
	field - Quantization of the Schrodinger equation - Klein Gordon field - The	
	Dirac field - Creation, annihilation and number operators	
	MANY ELECTRON SYSTEMS	
X 7	One particle central force problem - Non interacting particles and separation of	12
V	variables - Reduction of the two particles problems - Two particles rigid rotor -	13
	Hydrogen atom - Bound state Hydrogen atom wave functions -Hydrogen like orbitals – LCAO - V.B Theory – Hartree Method - Hartree Fock, SCF method.	
	Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

- Mathews P.M. Venkatesan, A Text Book Of Quantum Mechanics. Tata McGraw Hill Company Ltd, New Delhi, • (Unit - I).
- Aruldhas G. Quantum Mechanics. Prentice Hall India Company Pvt Ltd, New Delhi, (Units II & III). .
- Chatwal G.R. Anand S.K. (2006). Quantum Mechanics. Himalaya Publishing Company, New Delhi, (Unit -IV).
- Ira. N. Levine, Quantum Chemistry. Prentice Hall Company Ltd, New Delhi, (Unit V). •

Reference Books

- Gupta S.L. Gupta I.D. Advanced Quantum Theory And Fields. SChand and Company Ltd, New Delhi. •
- Atkins P.W. Quantum Mechanics. Oxford University Press, Oxford.
- Walter. A. Harrison, Applied Quantum Mechanics. Applied Publishers Ltd, Mumbai. •
- Wu T.Y. Pauchy Hwang W.Y. Relativistic Quantum Mechanics & Quantum Fields. Allied Publishers Ltd, New • Delhi.
 - Gupta, Kumar, Sharma, Quantum Mechanics. Pragathi Prakash Publications, Meerut. •
- Satya Prakash R. (2007). Advanced Quantum Mechanics. Kedar Nath Ram Nath, Fifth revised edition, Meerut. •

				-	
PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	S	М
CO2	S	Н	М	М	М
CO3	S	S	М	S	S
CO4	Н	М	М	Н	S

S – Strong; H – High; M – Medium; L – Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Dr.T.E.Manjula	alli Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Mapping

Programme code:	MSC	Programme Title :	Master of Science	9
Course Code:	18PPS311	Title	Batch :	2018- 2020
		Core XI: Molecular Spectroscopy	Semester	III
Hrs/Week:	5		Credits:	4

• To develop the skill to gain knowledge in Molecular Spectroscopy

Course Outcomes

K1	CO1	To recollect Symmetry operations and learn about Group theory
K2	CO2	To understand the origin of Microwave, Raman and IR spectroscopy
K3	CO3	To deploy the conditions for resonance in NMR, ESR, NQR and Mossbaurer
		Spectroscopy
K4	CO4	To review the theory and applications of NMR, ESR, NQR and Mossbaurer Spectroscopy

Syllabus

Unit	Content	Hrs		
	MOLECULAR SYMMETRY & GROUP THEORY			
	Group - Group Multiplication table - Classes - Symmetry elements, Symmetry			
Ι	operations & Point groups - Symmetry operations on molecular motions Reducible	13		
1	& Irreducible representations - The Great orthogonality theorem - Symmetry	15		
	species & Character tables - C_{2V} & C_{3V} Representations of a group - Number of			
	normal modes of various symmetry types - Symmetry of group vibrations			
	MICROWAVE SPECTROSCOPY			
	Theory of Microwave Spectroscopy - Classification of molecules -Diatomic			
II	molecule and the measurement of internuclear distance - Linear triatomic	13		
	molecules and the determination of the bond lengths - Microwave spectra of			
	Symmetric top molecules - Experimental technique			
	RAMAN SPECTROSCOPY			
	Quantum theory of Raman effect - Classical theory of Raman effect - Pure			
III	Rotational Raman spectra - Vibrational Raman spectra - Structure determination			
	from Raman & IR spectroscopy - Techniques & Instrumentation			
	IR SPECTROSCOPY			
	Vibrating diatomic molecule - Diatomic Vibrating Rotator - Vibrations of			
	Polyatomic molecules - Fourier transform IR spectroscopy			
	RESONANCE SPECTROSCOPY			
	Theory of Nuclear Magnetic Resonance - Conditions for Resonance - Bloch			
IV	equation and their Steady State solutions - Chemical shift - Experimental	13		
1,	techniques: Continuous & Pulse method - Applications - Concept and theory of	15		
	Electron Spin Resonance - Relaxation phenomenon - Experimental technique -			
	Applications			
	NQR & MOSSBAUER SPECTROSCOPY			
	Theory of NQR - Energy levels for molecules of axial and non axial symmetry -			
V	Experimental techniques and applications - Principle and theory of Mossbauer	13		
•	effect - Mossbauer instrumentation - Applications - Electronic spectroscopy - Frank			
	Condon principle - Vibrational coarse structure of electronic spectra - Fortrat			
diagram - Applications of electronic spectra to transition metal complexes				
	Total contact hours	65		

• Italic font denotes self study

Additional activities

Text Books

- Albert Cotton F. (1971). *Chemical Application Of Group Theory*. 2nd edition, Wiley Interscience, New York, (Unit I).
- Banwell C.N. Mccash E.M. (2001). *Fundamental Of Molecular Spectroscopy*. TataMcGraw Hill Publishing Company Ltd., New Delhi, (Units II & III).
- Aruldhas G. (2001). *Molecular Structure And Spectroscopy*. Prentice Hall of India Pvt Ltd New Delhi, (Units IV & V).

Reference Books

- Barrow G.M. Introduction To Molecular Spectroscopy. Prentice Hall of India Pvt Ltd, New Delhi.
- Chatwal and Anand, A Text Book Of Spectroscopy. Prentice Hall of India Pvt Ltd, New Delhi.
- Manas Chanda, *Atomic Structure And The Chemical Bond*. 2nd edition, Tata McGraw Hill Publishing Company, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	Н
CO2	S	S	S	Н	Н
CO3	S	Н	Н	Н	S
CO4	S	S	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Science	
Course Code:	18PPS3E2	Title	Batch:	2018- 2020
		Major Elective II: Microprocessor & Object-Oriented Programming With C++	Semester:	III
Hrs/Week:	5		Credits:	5

• To acquire knowledge about microprocessor and object oriented programs

Course outcomes

K1	CO1	To enhance the knowledge of various instruction set of the Microprocessor						
		Intel 8085						
K2	CO2	Γο understand the method of interfacing of different programmable devices.						
K3	CO3	To apply the various C++ functional operators to build a secure program						
K4	CO4	To solve problems in Physics based on microprocessor and OOPS						

Syllabus

Unit	Content	Hrs
	MICROPROCESSOR FUNDAMENTALS	
Ι	8085 Microprocessor pin diagram & functions - Architecture - Addressing modes - Instruction set - Data transfer instructions - Arithmetic instructions - Logical and Branch instructions - Stack, I/O & Machine control instructions - Subroutine ,Conditional Call instructions and return instructions	13
П	MICROPROCESSOR PROGRAMMING & INTERFACING Steps involved in Microprocessor programming - Straight line programs - Looping programs - Mathematical programs - Interfacing with ROM & RAM - I/O interfacing basics - Interfacing with practical I/O ports - Synchronizing I/O data transfers using Interrupts - Address decoding	13
III	PRINCIPLES OF OBJECT-ORIENTED PROGRAMMINGObject Oriented Programming Paradigm - Basic concepts of ObjectOriented Programming - Benefits of OOPCLASSES & OBJECTSSpecifying a Class - Defining Member functions - Nesting of Member functions- Private Member functions - Arrays within a class - Memory allocation forobjects- Static data members & Member functions - Arrays of Objects - Objectsas function arguments - Friendly functions - Returning objects	13
IV	CONSTRUCTORS & DESTRUCTORS Constructors - Parameterized Constructors - Multiple Constructors in a Class - Copy Constructor -Dynamic Constructor- Destructors OPERATOR OVERLOADING Defining Operator Overloading - Overloading Unary & Binary Operators - Overloading Binary Operators using Friends - Rules for Overloading Operators	13
V	INHERITANCE: EXTENDING CLASSES Defining Derived classes - Single inheritance - Making a Private Member inheritable - Multilevel inheritance - Multiple inheritance - Hierarchical inheritance - Hybrid inheritance - Virtual base classes POINTERS &VIRTUAL FUNCTIONS Pointers to Objects - this Pointer - Pointers to Derived Classes - Virtual functions - Pure virtual functions	13
	Total contact hours	65

• Italic font denotes self study

Additional activities

Text Books

- Roger L.Tokheim, (1987). *Microprocessor Fundamentals*. 3rd Edition, Schaum's Outline Series, McGraw Hill Book Company, New Delhi, (Units I & II).
- Balagurusamy E. (2004). *Object Oriented.Programming With C++*. Tata Mc Graw Hill Publication, New Delhi, (Units III V).

Reference Books

- Ramesh S.Gaonkar, (1997). *Microprocessor Architecture Programming & Applications With The 8085*. 3rd Edition, Penram International Publishing, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). Mastering C++. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). Programming With C++. Tata Mc Graw Hill Publication, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	Н	S	Н	Н
CO3	Н	Н	Н	S	S
CO4	S	Н	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name: S.Shanmuga Priya	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	MSC	Programme Title: Master of Scien		ence
Course Code:	18PPS412	Title	Batch:	2018- 2020
Hrs/Week:		Core XII: Condensed Matter Physics	Semester: Credits:	IV 4

• To provide coherent perspective of the physical concepts and theories related with the characterization of materials

Course outcomes

K1	CO1	Provide an in-depth knowledge of structure of crystals
K2	CO2	Analyze the different properties like electric, magnetic and thermal and develop the skills for
		research
K3	CO3	Acquire deep understanding in the field of material science
K4	CO4	To emphasize the applications of superconductors in industry and medical fields

Syllabus

Unit	Content	Hrs
I	GEOMETRY OF CRYSTALS Basis of Crystal structure – Unit cell – Primitive cell – Symmetry operations – Translation operations, Point operations & Hybrid operations – Crystal types – Two and three dimensional crystal lattices – Common crystal structures – Indices of a lattice direction and a lattice plane – Crystal bonding – Primary bonds – Covalent, Metallic, Ionic bonding – Van der Waals bond – Hydrogen bond (formation & properties) – Bond energy of NaCl molecule – Calculation of Lattice energy of ionic crystal – Calculation of Madelung constant of ionic crystals – Reciprocal lattice – Geometrical construction of Reciprocal lattice – Bragg's law – Laue's interpretation of X ray diffraction by crystals – Measurement of diffraction patterns of crystals – Ewald construction – Experimental methods – <i>Point defects, Dislocations and Color</i> <i>centers(Basic ideas only)</i>	13
П	LATTICE VIBRATIONS OF SOLIDS & THERMAL PROPERTIES One line of atoms – the linear diatomic lattice – Quantization of lattice vibrations – Experimental determination of dispersion relation – Inelastic scattering of neutrons – The specific heat – Lattice specific heat – Classical theory – Einstein theory – The Debye theory – Born's modification – Thermal conductivity – Lattice thermal conductivity – Phonon mean free path – The Umklapp processes	13
III	FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Classical free electron theory of Drude-Lorentz – Sommerfeld quantum theory (Energy levels in one and three dimensions) – Fermi Dirac distribution – Density of states – Fermi energy – Wave functions in a periodic lattice and the Bloch theorem – Behaviour of an electron in a periodic potential (Kronig Penney model) – Brillouin zone – Number of possible wave functions in a band - Motion of electrons in one dimensional periodic potential (crystal momentum, velocity, effective mass, negative effective mass and holes)	13
IV	FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ – Polarization Catastrophe – Ferroelectric domains –Piezoelectricity – Langevin's theory of Diamagnetism and Para magnetism – Quantum theory of Diamagnetism and Para magnetism – Cooling by adiabatic demagnetization - Weiss theory of Ferromagnetism - Ferromagnetic domains – Neel model of Anti ferromagnetism – <i>Neel model of Ferrimagnetism</i>	13
V	SUPERCONDUCTORS Mechanism of Superconductors – Effects of magnetic field – Critical current – Meissner effect – Type I and Type II Superconductors - London equations - Thermodynamics of Superconductors - BCS theory - Quantum tunneling - Josephson's tunneling - Theory of AC & DC Josephson effect - High temperature	13

Superconductors	
Total contact hours	65

• Italic font denotes self study

Additional activities

Seminar, Assignment, Experience discussion, PPT

Text Books

- Pillai S.O. (2001). Solid State Physics. 4th Edition, New Age international (P) Ltd, NewDelhi, (Units I,III V).
- Singhal R.L. (1989). Solid State Physics. 4th edition, Kedarnath Ramnath & Co, Meerut, (Unit-II).

Reference Books

- Richard Christman J. (1998). Fundamentals Of Solid State Physics. 1st Edition, Library of congress cataloguing.
- Decker A. J. (1963). *Solid State Physics*. 1st Edition, Macmillan & Co, Madras.
- Kittel C. (2004). Introduction to Solid State Physics. Revised 7th edition, John Wiley & sons, New York,.
- Srivastava J.P. (2001). *Elements of Solid State Physics*. 6th Edition, Prentice hall of India, , New Delhi, .

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	М	S	М
CO2	Н	М	S	Н	Н
CO3	М	S	Н	М	S
CO4	S	М	L	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name:	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	MSC	Programme Title:	Master of Science	
Course Code:	18PPS413	Title	Batch:	2018-2020
		Core XIII: Nuclear & Particle Physics	Semester:	IV
Hrs/Week:	5		Credits:	4

• To study the nuclear structure and properties of nuclei through nuclear models.

Course outcomes

K1	CO1	Understand the basic properties and structure of nucleus and nuclear reactions
K2	CO2	Analyze the properties and significance of stable nucleus through different types of nuclear
		models
K3	CO3	Elucidate the latest development in the classification of elementary particles like quarks, Higgs
		bosons
K4	CO4	Develop skills in solving problems in nuclear physics and pave a way to research in nuclear
		physics

Syllabus

Unit	Content	Hrs
Ι	TWO BODY PROBLEM AND NUCLEAR FORCES Deutron - Properties - Ground state of Deutron - Neutron Proton scattering at low energies - Scattering length and effective range - Spin dependence of n p forces - Tensor forces - Exchange forces - Nuclear forces - Properties of nuclear forces - Yukawa theory of nuclear forces	13
П	NUCLEAR MODELS Liquid drop model - Shell model - Magic numbers - Magnetic moments and the Shell model - Prediction of angular momenta of nuclear ground states by Shell model - Collective model - Vibrational and Rotational states - <i>Elementary</i> <i>ideas of Unified and Optical model</i>	13
III	NUCLEAR DISINTEGRATION Law of radioactive decay -Half life and Mean life of an radioactive nuclide- Alpha ray emission - Gamow's theory of alpha decay - Alpha ray energies and fine structure – Spontaneous alpha particle disintegration energy - Beta decay- General features of beta ray spectrum - Fermi's theory of beta decay -Forms of interaction and selection rules- Parity in beta decay - Electron capture - Gamma decay – Absorption and interaction of Gamma ray with matter- Internal conversion - Angular correlation in gamma emission.	13
IV	NUCLEAR FISSION AND FUSION REACTORSIntroduction-Mass and energy distribution of fission fragments – Neutronemission by fission process – Prompt and delayed neutrons – Theory of nuclearfission and liquid drop model – Nuclear chain reactions – Controlled fission :Nuclear reactors -Nuclear fusion: Introduction – Fusion reaction –Thermonuclear reaction as source of stellar energy – Controlled thermonuclearreactors.	13

v	ELEMENTARY PARTICLES General classification of Elementary particles - Conservation law and selection rules for production and decay of particles - CPT theorem - Hadron classification according to Eight foldway - Gellmann Okuba mass formula for Baryons - Quarks : The original quark model, charm and other developments – Colored quarks or quantum chromodynamics- Electroweak theory and the standard model- Grand Unification theory and supersymmetry- String theory : A new perspective	13
Total contact hours		

• Italic font denotes self study

Additional activities

	Seminar	Assignment,	Experience	discussion	PPT
I	Semmar,	Assignment,	Experience	uiscussion,	111

Text Books

- Pandya M.L. Yadav R.P.S. (1989). *Elements Of Nuclear Physics*. 5th Edition, Kedar Nath Ram Nath, Meerut,(Units I - V).
- Raymond A.Serway, Clement J.Moses, Curt A. Moyer, *Modern Physics*. 2nd Edition, Saunders College publishing (Harcourt Brace College publishers), (Units V- Quarks).

Reference Books

- Srivastava B.N. (1971). *Basic Nuclear Physics*. 12th edition, Pragathi Prakashan, Meerut.
- Kenneth S.Krane, (1988). *Introductory Nuclear Physics*. 2nd edition, John Wiley & sons, New York.
- Tayal D.C. (2008). *Nuclear Physics*. 5th edition, Himalaya Publishing house, Mumbai.
- Atam P.Arya, (1974). Elementary Modern Physics. Addison Wesley Publishing Co.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	S	Н	S
CO2	S	Н	М	Н	М
CO3	Н	М	Н	М	S
CO4	S	М	S	М	Н

Mapping

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.V.Sathyabama	Name: Dr.K.Kandaswamy Signature:	Name: Dr.M.Durairaju Signature:	Name: Dr.R.Muthukumaran Signature:
	-	0	- 6 · · · · · ·

Programme Code: MSC		Programme Title:	Master of Science	
Course Code:	18PPS414	Title	Batch:	2018-2020
		Core XIV: General Physics Lab II	Semester:	III & IV
Hrs/Week:	4		Credits:	5

• To become familiar with the techniques of advanced General Experiments.

Course outcomes

K3	CO1	Become familiar with techniques of advanced general experiments
K4	CO2	Impart the broad knowledge of experimental methods and measurement techniques
K5	CO3	Familiarize analytical calculations

List of Experiments:

- 1. Copper Arc Spectra CDS
- 2. λ , $d\lambda$ of a Monochromatic source and Thickness of a Mica sheet Michelson's Interferometer
- 3. Zeeman Effect
- 4. Magnetic Susceptibility Quincke's Method
- 5. Resistance of a Semiconductor Four Probe Method
- 6. Iron Arc Spectra CDS
- 7. Velocity of Sound in liquid- Ultrasonic Diffraction
- 8. Magnetic Susceptibility- Guoy's Method
- 9. Magnetoresistance
- 10. BH Curve Hysterisis Standard Solenoid
- 11. Brass Arc Spectra CDS
- 12. e/m Millikan's oil drop method
- 13. Polarimeter Specific rotation of optically active substances
- 14. Planck's constant Photovoltaic cell and V-I characteristics of solar cell
- 15. Optical Fibre Numerical aperture, Attenuation, Particle size and λ

Reference Books

- Worsnop, Flint, (1971). Advanced Practical Physics. Asia Publishing house.
- Singh S.P. (Vol. I & Vol. II), (1998). *Advanced Practical Physics*. 11th Edition Pragati Prakashan, Meerut.

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	М	S
CO2	М	S	Н	S	Н
CO3	М	S	S	S	S

S – Strong; H – High; M – Medium; L – Low

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms. K.V.Jayasree	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Mapping

Programme Code:	MSC	Programme Title:	Master of Scie	ence
Course Code:	18PPS415	Title	Batch:	2018-2020
Course Coue:	18895415	Core XV: Electronics Lab II	Semester:	III & IV
Hrs/Week:	4		Credits:	5

• To know the action and applications of operational amplifier, and to become familiarize with 8085 microprocessor

Course outcomes

K3	CO1	Gain knowledge and understanding of the components and equipments
K4	CO2	Design analog circuits, make measurements, analyze and interpret the experimental data.
K5	CO3	Use the 8085 microprocessor for interfacing devices.

List of Experiments:

- 1. Parameters of Operational amplifier
- 2. Inverting, Non Inverting, Differential amplifier, Integrator and Differentiator- Op Amp
- 3. Schmitt trigger, Scale changer, Phase changer Op Amp
- 4. Constant current source Op Amp
- 5. Microprocessor Addition, Subtraction, Multiplication, Division & Conversion of Number systems
- 6. Simple and Regenerative Comparators Op Amp
- 7. Digital to Analog converter Op Amp
- 8. Adder, Subtractor, Current to Voltage converter and Voltage to Current converter-Op Amp
- 9. Low pass, Band pass & High pass filters Op Amp
- 10. Microprocessor Interfacing I
- 11. Window Detector Op Amp
- 12. Analog to Digital converter Op Amp
- 13. Solving first order simultaneous equations of two variables- Op Amp
- 14. Function Generator Op Amp
- 15. Microprocessor Interfacing II

Reference Books

- Paul B. Zbar, Joseph Sloop, (1983). *Electricity & Electronics Fundamentals A Text-Lab Manual*. McGraw Hill, New Delhi.
- Paul B.Zbar, Malvino, Miller, (1997). Electronics: A Text- Lab Manual. Mc.Graw Hill, New Delhi.
- Woollard G. (1984). *Practical Electronics*. 2nd Edition, McGraw Hill, New Delhi.
- Subramaniyan S.V. (1983). *Experiments In Electronics*. Macmillan India Ltd.
- Gayakwad, (1988). *Operational Amplifier And Linear Integrated Systems*. 2nd Edition, Prentice hall of India pvt Ltd, New Delhi.
- 8085 µp Trainer kit Manual, Version 4.0 Microsystems Pvt Ltd.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	S	S
CO2	Н	S	S	L	М
CO3	М	М	М	М	S

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:Dr.T.E.Manjulavalli Na	ame: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature: Sig	gnature:	Signature:	Signature:

Programme Code:	MSC	Programme Title:	Master of Science

Programme Code: MSC		Programme Title:	Master of Science	
Course Code:	18PPS416	Title	Batch:	2018-2020
Course Code:	18225410	Core XVI: Computer Lab in C++	Semester:	IV
Hrs/Week:	2		Credits:	3

To acquire basic knowledge in object oriented programming

Course outcomes

K3	CO1	To understand the concepts and benefits of OOPs
K4	CO2	To analyze the functions of various C++ operators
K5	CO3	To apply the C++ language to solve problems in Physics.

List of Experiments:

.

- 1. Class implementation.
- 2. Arrays within a Class.
- 3. Static data members and member function.
- 4. Arrays of Objects
- 5. Friend function.
- 6. A function friendly to two classes.
- 7. Overloaded Constructors.
- 8. Implementation of Destructors.
- 9. Overloading Unary operator.
- 10. Overloading Binary operator.
- 11. Single Inheritance.
- 12. Hybrid inheritance.
- 13. Virtual base class.
- 14. Pointers to derived objects.
- 15. Virtual functions.

Reference Books

- Balagurusamy E. (2004). *Object Oriented. Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.
- Venugopal K.P. Rajkumar, Ravishankar T. (2001). *Mastering C++*. Tata Mc Graw Hill Publication, New Delhi.
- Ravichandran D. (2003). *Programming With C++*. Tata Mc Graw Hill Publication, New Delhi.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	S	S	Н
CO2	S	Н	S	S	S
CO3	Н	S	Н	S	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: S.Shanmuga Priya	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signature:

Course Code:	19000402	Title	Batch:	2018- 2020	Course Objective
	18PPS4E3	Major Elective III: Thin film & Nano science	Semester:	IV	• T
Hrs/Week:	5		Credits:	5	o develop

the

knowledge about fundamentals of Thin Film and Nano science

Course outcomes

K1	CO1	To understand the concepts of Thin Films
K2	CO2	To study the design of different synthesis methodologies of thin film and nanoscience
K3	CO3	To familiarize with the basics of Nanotechnology and Quantum structure
K4	CO4	To understand the characteristic techniques of various analysis

Syllabus

Unit	Content	Hrs
Ι	 Thin film Nature of thin film, Thermodynamics of nucleation, Film growth, Deposition parameters& grain size, Epitaxy, Incorporation of defects, Impurities in thin films. Deposition Techniques: Physical Vapour deposition: Thermal Evaporation, RF Sputtering, Chemical Vapour deposition: Pyrolysis, Chemical deposition: Chemical Bath deposition. 	13
II	Properties of thin filmsOptical properties: Reflection, Transmission, Absorption , Energy band gap, Transition.Electrical properties: Sheet resistance, Measurement of sheet resistance, Temperature co-efficient of resistance(TCR),Influence of thickness on resistivity, Hall effect and Magneto resistance Application: Integrated circuits	13
III	Nanoscience Introduction - classification of quantum structure –quantum confinement- Nanoscale architecture - Summary of electronic properties of atoms and solids: Free electron model and energy bands, Electronic conduction Electronic density of states- Effects of Nanometre length scale- How nanoscale dimension affect properties: Structural properties, Thermal properties, chemical properties, Mechanical properties, Magnetic properties, Optical properties, Electronic properties, Biological systems.	13
IV	Structure and properties of NanoparticlesMetal nanoclusters:Magic numbers, Geometric structure, Electronic structure,Reactivity, Magnetic properties.Semiconducting nanoparticles:Optical properties, Photo fragmentation,coulombic explosionCarbon nanostructures:Introduction- Carbon nanoclusters-carbon nanotubes-properties-Application.	13
v	Synthesis and Characterization of NanoparticlesTop down approach(Physical method):Lithography-Ball milling-Laserinduced evaporation –Pulsed laser evaporationBottom up approach(Chemical method): Sol-gel process-Self assembly- Solvo thermal process- Electro chemical synthesis- Thermolysis.Characterization:XRD – Particle size determination-Spectroscopy(IR and Raman)-UV spectroscopy-Photo luminescence spectroscopy.	13
	Total contact hours	65

Additional activities

Text Books

- Goswami A(1996) Thin film fundamentals A New Age International
- L I Maissel and R Clang Hand book of Thin Film technology, Frey, Hartmut, Khan, Hamid
- Charles P. Poole, Frank J. Owens, (2011), *Introduction to Nanotechnology*, John Wiley & Sons, New York, (Units IV).
- Robert W.Kelsall, Ian W.Hamley, Mark Geoghegan. Nanoscale Science and Technology, John Wiley & Sons, Ltd. (III & V)

Reference Books

- Muralidharan V.S. Subramania A. *Nanoscience and Technology*. Ane Books Pvt Ltd I Edition, New Delhi, (Units IV & V).
- Guozhong CAO, (2008). Nano Structures And Nano Materials. Imperial College plus, London.

Mapping

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	S	Н
CO2	S	М	S	Н	Н
CO3	S	Н	S	Н	S
CO4	S	S	S	Н	Н

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Ms. S.Shanmugapriya	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran
Signature:	Signature:	Signature:	Signa

Programme Code:	MSC	Programme Title:	Master of Sci	ence
Course Code:	18PPS417	Title	Batch:	2018-2020
		Core XVII: Project	Semester:	IV
Hrs/Week:	3		Credits:	8

To promote higher education and to encourage students to take up either theoretical or experimental research.

Course Outcome:

The students after completion of their project work will be able to

- CO1: Deeply understand the fundamental principles in the chosen field of interest.
- CO2: Perform an effective literature search and then apply the appropriate laboratory and computational skills to conduct research.
- CO3: Collect, data, analyse and prepare report of his/her findings.
- CO4: Effectively defend the results of the work.

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name: Dr.K.Kandaswamy	Name: Dr.K.Kandaswamy	Name: Dr.M.Durairaju	Name: Dr.R.Muthukumaran	
Signature:	Signature:	Signature:	Signature:	